Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitology ; 146(11): 1379-1386, 2019 09.
Article in English | MEDLINE | ID: mdl-31190664

ABSTRACT

Survival and infectivity of trypanosomatids rely on cell-surface and secreted glycoconjugates, many of which contain a variable number of galactose residues. Incorporation of galactose to proteins and lipids occurs along the secretory pathway from UDP-galactose (UDP-Gal). Before being used in glycosylation reactions, however, this activated sugar donor must first be transported across the endoplasmic reticulum and Golgi membranes by a specific nucleotide sugar transporter (NST). In this study, we identified an UDP-Gal transporter (named TcNST2 and encoded by the TcCLB.504085.60 gene) from Trypanosoma cruzi, the etiological agent of Chagas disease. TcNST2 was identified by heterologous expression of selected putative nucleotide sugar transporters in a mutant Chinese Hamster Ovary cell line. TcNST2 mRNA levels were detected in all T. cruzi life-cycle forms, with an increase in expression in axenic amastigotes. Confocal microscope analysis indicated that the transporter is specifically localized to the Golgi apparatus. A three-dimensional model of TcNST2 suggested an overall structural conservation as compared with members of the metabolite transporter superfamily and also suggested specific features that could be related to its activity. The identification of this transporter is an important step toward a better understanding of glycoconjugate biosynthesis and the role NSTs play in this process in trypanosomatids.


Subject(s)
Golgi Apparatus/metabolism , Monosaccharide Transport Proteins/metabolism , Protozoan Proteins/genetics , Trypanosoma cruzi/genetics , Animals , CHO Cells , Cricetulus , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sequence Analysis, Protein , Trypanosoma cruzi/metabolism
2.
BMC Microbiol ; 15: 269, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26589870

ABSTRACT

BACKGROUND: Nucleotide sugar transporters (NSTs) play an essential role in translocating nucleotide sugars into the lumen of the endoplasmic reticulum and Golgi apparatus to be used as substrates in glycosylation reactions. This intracellular transport is an essential step in the biosynthesis of glycoconjugates. RESULTS: We have identified a family of 11 putative NSTs in Trypanosoma cruzi, the etiological agent of Chagas' disease. A UDP-N-acetylglucosamine transporter, TcNST1, was identified by a yeast complementation approach. Based on a phylogenetic analysis four candidate genes were selected and used for complementation assays in a Kluyveromyces lactis mutant strain. The transporter is likely expressed in all stages of the parasite life cycle and during differentiation of epimastigotes to infective metacyclics. Immunofluorescence analyses of a GFP-TcNST1 fusion protein indicate that the transporter is localized to the Golgi apparatus. As many NSTs are multisubstrate transporters, we also tested the capacity of TcNST1 to transport GDP-Man. CONCLUSIONS: We have identified a UDP-N-acetylglucosamine transporter in T. cruzi, which is specifically localized to the Golgi apparatus and seems to be expressed, at the mRNA level, throughout the parasite life cycle. Functional studies of TcNST1 will be important to unravel the role of NSTs and specific glycoconjugates in T. cruzi survival and infectivity.


Subject(s)
Golgi Apparatus/enzymology , Membrane Transport Proteins/genetics , Trypanosoma cruzi/enzymology , Gene Expression Profiling , Genetic Complementation Test , Golgi Apparatus/genetics , Kluyveromyces/genetics , Kluyveromyces/metabolism , Life Cycle Stages , Membrane Transport Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...