Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 134(13): 5758-61, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22352451

ABSTRACT

We report the isolation and characterization of arylpalladium cyanide complexes that undergo reductive elimination to form arylnitriles. The rates of reductive elimination from a series of arylpalladium cyanide complexes reveal that the electronic effects on the reductive elimination from arylpalladium cyanide complexes are distinct from those on reductive reductive eliminations from arylpalladium alkoxo, amido, thiolate, and enolate complexes. Arylpalladium cyanide complexes containing aryl ligands with electron-donating substituents undergo reductive elimination of aromatic nitriles faster than complexes containing aryl ligands with electron-withdrawing substituents. In addition, the transition state for the reductive elimination of the aromatic nitrile is much different from that for reductive eliminations that occur from most other arylpalladium complexes. Computational studies indicate that the reductive elimination of an arylnitrile from Pd(II) occurs through a transition state more closely related in structure and electronic distribution to that for the insertion of CO into a palladium-aryl bond.


Subject(s)
Nitriles/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/isolation & purification , Palladium/chemistry , Models, Molecular , Molecular Conformation , Oxidation-Reduction
2.
Angew Chem Int Ed Engl ; 50(1): 86-95, 2011 Jan 03.
Article in English | MEDLINE | ID: mdl-20857466

ABSTRACT

Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity.


Subject(s)
Ammonia/chemistry , Organometallic Compounds/chemistry , Alkylation , Amination , Catalysis , Cross-Linking Reagents/chemistry , Nitrogen/chemistry
3.
J Am Chem Soc ; 132(34): 11830-3, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20695642

ABSTRACT

We report reductive eliminations of primary arylamines from a series of bisphosphine-ligated arylpalladium(II) parent amido complexes that counter several established trends. In contrast to arylamido and alkylamido complexes of the aromatic bisphosphines DPPF and BINAP, parent amido complexes of these ligands do not form or undergo reductive elimination of monoarylamines. However, arylpalladium parent amido complexes ligated by the alkylbisphosphine CyPF-t-Bu do form in good yield and undergo reductive elimination. Despite the basicity of the parent amido ligand and the typically faster reductive elimination from complexes containing more basic amido ligands, the CyPF-t-Bu-ligated arylpalladium parent amido complexes undergo reductive elimination much more slowly than the analogous complexes containing arylamido or alkylamido ligands. Moreover, the parent amido complexes form more rapidly and are more stable thermodynamically in a series of exchange processes than the arylamido complexes. Computational studies support the overriding influence of steric effects on the stability and reactivity of the parent amido complex. The slow rate of reductive elimination causes the arylpalladium amido complex to be the resting state of the coupling of aryl halides with ammonia catalyzed by CyPF-t-Bu-ligated palladium, and this resting state contrasts the Pd(0) or arylpalladium(II) resting states of reactions of aryl halides with amines catalyzed by most palladium complexes.


Subject(s)
Amides/chemistry , Amines/chemical synthesis , Organometallic Compounds/chemistry , Palladium/chemistry , Amines/chemistry , Molecular Structure , Organometallic Compounds/chemical synthesis , Phosphines/chemistry , Stereoisomerism
4.
Biomacromolecules ; 10(1): 128-33, 2009 Jan 12.
Article in English | MEDLINE | ID: mdl-19067503

ABSTRACT

Spontaneous gel formation of iron(II) tris(bipyridine)-centered poly(ethylene glycol) methacrylate ([Fe{bpy(PEG-MA)2}3]2+) was observed without the addition of a cross-linking agent. BpyPEG2 macroligands were first modified with methacrylate groups using methacrylic anhydride and then combined with FeSO4 to produce [Fe{bpy(PEG-MA)2}3]SO4. End group analysis by 1H NMR spectroscopy verified quantitative methacrylation of the PEG hydroxyl chain ends. A series of experiments and control reactions were performed to investigate the conditions required for gel formation. Hydrogels of [Fe{bpy(PEG-MA)2}3]SO4 were produced both in the presence and in the absence of a photoinitiator. Controls using MA-PEG-MA also formed hydrogels in the presence of [Fe(bpy)3]2+; however, the addition of a radical scavenger, TEMPO, prevented formation of a polymer network, suggesting radical involvement. Treatment of preformed hydrogels of bpy(PEG-MA)2 with aqueous solutions of FeSO4, CuBr2, and CoCl2 also produced materials with color changes indicative of complexation.


Subject(s)
Ferrous Compounds/chemistry , Hydrogels/chemistry , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Pyridines/chemistry , Hydrogels/chemical synthesis , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Time Factors
5.
Inorg Chem ; 47(14): 6532-40, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18563893

ABSTRACT

Ruthenium polypyridyl complexes are incorporated into polymers for sensing and light emitting materials applications. Coupling reactions between metal complexes and polymers are one route to polymeric metal complexes. In an effort to increase conjugation efficiency, tune materials properties, and introduce a responsive crosslink, ruthenium tris(bipyridine) derivatives with sulfur substituents were synthesized and compared to oxygen analogues. Difunctional thiols, thioesters, thioethers, and disulfides, as well as hexafunctional nonpolymeric model systems, were explored. Upon exposure to oxygen, the thiol derivative was readily oxidized. These studies guided Ru(bpy)3 PEG coupling reactions with disulfide and thioether linkages, which proceeded to approximately 80% and approximately 60% yield, respectively. The luminescence properties of the Ru PEG derivatives and model systems were investigated. The emission spectra and lifetimes for all complexes in CH3CN under an inert atmosphere are comparable to [Ru(bpy)3]Cl2. Lifetime data for nonpolymeric analogues fit to a single exponential decay indicating heterogeneity, suggesting sample homogeneity, whereas data for polymers fit to a multiexponential decay. In contrast to certain [Ru(bpy)3](2+)/thiol mixtures, no intramolecular quenching by the sulfide is observed for [Ru(bpy)2{bpy(CH2SH)2}](PF6)2. Emission spectra red shift and multiexponential decay are noted for the oxidized Ru thiol product. The rates of oxygen quenching are slower for Ru PEG derivatives than those for nonpolymeric analogues, which may be attributed to shielding effects of the polymer chain.

6.
Biomacromolecules ; 8(9): 2829-35, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17663530

ABSTRACT

Ruthenium(II) tris(bipyridine)-centered poly(ethylenimine) (Ru PEI) was synthesized via acid hydrolysis of Ru tris(bipyridine)-centered poly(2-ethyl-2-oxazoline) (Ru PEOX), and the luminescence, DNA entrapment, and transfection efficiencies were evaluated. Emission maxima for Ru PEI samples are red-shifted compared to Ru PEOX precursors, and the luminescence lifetimes are shorter in both methanol and aqueous solutions. Slower oxygen quenching of Ru PEOX and Ru PEI luminescence versus [Ru(bpy)3]Cl2 (bpy = bipyridine) is attributed to polymer shielding effects. Ru PEI luminescence is similar in the presence and absence of DNA. Ru PEI (7900 Da) and linear PEI (L-PEI; 22,000 Da) fully entrapped DNA (5.4 kb; pcDNA) at an N/P ratio of 2. LNCaP prostate cancer cells were transfected with a plasmid encoding for green fluorescent protein using Ru PEI and L-PEI vectors for comparison. For N/P = 48, the transfection efficiency for Ru PEI was approximately 50% relative to that of L-PEI.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Gene Transfer Techniques , Polyethyleneimine/chemistry , 2,2'-Dipyridyl/chemistry , Cell Line, Tumor , Coordination Complexes , Humans , Male , Molecular Structure , Prostate/cytology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...