Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35161006

ABSTRACT

The encapsulation of single-layer 2D materials within hBN has been shown to improve the mobility of these compounds. Nevertheless, the interplay between the semiconductor channel and the surrounding dielectrics is not yet fully understood, especially their electron-phonon interactions. Therefore, here, we present an ab initio study of the coupled electrons and phonon transport properties of MoS2-hBN devices. The characteristics of two transistor configurations are compared to each other: one where hBN is treated as a perfectly insulating, non-vibrating layer and one where it is included in the ab initio domain as MoS2. In both cases, a reduction of the ON-state current by about 50% is observed as compared to the quasi-ballistic limit. Despite the similarity in the current magnitude, explicitly accounting for hBN leads to additional electron-phonon interactions at frequencies corresponding to the breathing mode of the MoS2-hBN system. Moreover, the presence of an hBN layer around the 2D semiconductor affects the Joule-induced temperature distribution within the transistor.

2.
ACS Nano ; 14(7): 8605-8615, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32530608

ABSTRACT

Due to their remarkable properties, single-layer 2-D materials appear as excellent candidates to extend Moore's scaling law beyond the currently manufactured silicon FinFETs. However, the known 2-D semiconducting components, essentially transition metal dichalcogenides, are still far from delivering the expected performance. Based on a recent theoretical study that predicts the existence of more than 1800 exfoliable 2-D materials, we investigate here the 100 most promising contenders for logic applications. Their current versus voltage characteristics are simulated from first-principles, combining density functional theory and advanced quantum transport calculations. Both n- and p-type configurations are considered, with gate lengths ranging from 15 down to 5 nm. From this large collection of electronic materials, we identify 13 compounds with electron and hole currents potentially much higher than those in future Si FinFETs. The resulting database widely expands the design space of 2-D transistors and provides original guidelines to the materials and device engineering community.

SELECTION OF CITATIONS
SEARCH DETAIL
...