Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1234332, 2023.
Article in English | MEDLINE | ID: mdl-37663250

ABSTRACT

Rationale: The endocannabinoid system is known to be involved in learning, memory, emotional processing and regulation of personality patterns. Here we assessed the endocannabinoid profile in the brains of mice with strong characteristics of social dominance and submissiveness. Methods: A lipidomics approach was employed to assess the endocannabinoidome in the brains of Dominant (Dom) and Submissive (Sub) mice. The endocannabinoid showing the greatest difference in concentration in the brain between the groups, docosatetraenoyl ethanolamine (DEA), was synthesized, and its effects on the physiological and behavioral responses of Dom and Sub mice were evaluated. mRNA expression of the endocannabinoid receptors and enzymes involved in PUFA biosynthesis was assessed using qRT-PCR. Results: Targeted LC/MS analysis revealed that long-chain polyunsaturated ethanolamides including arachidonoyl ethanolamide (AEA), DEA, docosatrienoyl ethanolamide (DTEA), eicosatrienoyl ethanolamide (ETEA), eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) were higher in the Sub compared with the Dom mice. Untargeted LC/MS analysis showed that the parent fatty acids, docosatetraenoic (DA) and eicosapentaenoic (EPA), were higher in Sub vs. Dom. Gene expression analysis revealed increased mRNA expression of genes encoding the desaturase FADS2 and the elongase ELOVL5 in Sub mice compared with Dom mice. Acute DEA administration at the dose of 15 mg/kg produced antinociceptive and locomotion-inducing effects in Sub mice, but not in Dom mice. Subchronic treatment with DEA at the dose of 5 mg/kg augmented dominant behavior in wild-type ICR and Dom mice but not in Sub mice. Conclusion: This study suggests that the endocannabinoid system may play a role in the regulation of dominance and submissiveness, functional elements of social behavior and personality. While currently we have only scratched the surface, understanding the role of the endocannabinoid system in personality may help in revealing the mechanisms underlying the etiopathology of psychiatric disorders.

2.
ACS Omega ; 8(11): 10253-10265, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969447

ABSTRACT

The DNA duplex may be locally strongly bent in complexes with proteins, for example, with polymerases or in a nucleosome. At such bends, the DNA helix is locally in the noncanonical forms A (with a narrow major groove and a large amount of north sugars) or C (with a narrow minor groove and a large share of BII phosphates). To model the formation of such complexes by molecular dynamics methods, the force field is required to reproduce these conformational transitions for a naked DNA. We analyzed the available experimental data on the B-C and B-A transitions under the conditions easily implemented in modeling: in an aqueous NaCl solution. We selected six DNA duplexes which conformations at different salt concentrations are known reliably enough. At low salt concentrations, poly(GC) and poly(A) are in the B-form, classical and slightly shifted to the A-form, respectively. The duplexes ATAT and GGTATACC have a strong and salt concentration dependent bias toward the A-form. The polymers poly(AC) and poly(G) take the C- and A-forms, respectively, at high salt concentrations. The reproduction of the behavior of these oligomers can serve as a test for the balance of interactions between the base stacking and the conformational flexibility of the sugar-phosphate backbone in a DNA force field. We tested the AMBER bsc1 and CHARMM36 force fields and their hybrids, and we failed to reproduce the experiment. In all the force fields, the salt concentration dependence is very weak. The known B-philicity of the AMBER force field proved to result from the B-philicity of its excessively strong base stacking. In the CHARMM force field, the B-form is a result of a fragile balance between the A-philic base stacking (especially for G:C pairs) and the C-philic backbone. Finally, we analyzed some recent simulations of the LacI-, SOX-4-, and Sac7d-DNA complex formation in the framework of the AMBER force field.

SELECTION OF CITATIONS
SEARCH DETAIL
...