Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 68(12): 2417-25, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15548388

ABSTRACT

The human cytochrome CYP4F12 has been shown to be metabolically active toward inflammatory mediators and exogenous compounds such as antihistaminic drugs. We recently identified a genetic polymorphism within the promoter region, associated with a decreased level of enzyme expression. In the present study, we report the further identification of single nucleotide polymorphisms in the coding sequence of the CYP4F12 gene. A polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis of DNA samples from 53 unrelated French Caucasians, allowed the identification of ten mutations, comprising seven missense mutations, 31C>T (Leu11Phe), 38C>T (Pro13Leu), 47C>T (Met16Thr), 4759G>A (Asp76Asn), 4801G>A (Val90Leu), 8896C>T (Arg188Cys) and 23545G>A (Gly522Ser). Their functional impact toward ebastine hydroxylation was evaluated using heterologous expression in Saccharomyces cerevisiae cells of site-directed mutated cDNA variants. Five out seven variants did not exhibit any significant difference in CYP4F12 catalytic activity, whereas two variants, Val90Ile and Arg188Cys, displayed significant changes in their Michaelis-Menten (Km, Vm) parameters. These data on CYP4F12 genetic polymorphism provide tools for further studies of association with pathological processes involving an inflammatory component and with variations in anti-histaminic drug response.


Subject(s)
Aryl Hydrocarbon Hydroxylases/genetics , Mixed Function Oxygenases/genetics , Mutation, Missense , Polymorphism, Genetic , Catalysis , DNA Mutational Analysis , Gene Expression , Humans , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics
2.
Biochem Pharmacol ; 67(12): 2231-8, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15163554

ABSTRACT

The human cytochrome CYP4F12 has been shown to be active toward inflammatory mediators and exogenous compounds such as antihistaminic drugs. In the present study, we report the first investigation of polymorphisms in the human CYP4F12 gene. A screening for sequence variations in the 5'-flanking region was performed by a Polymerase Chain Reaction-Single Strand Conformational Polymorphism (PCR-SSCP) strategy, using DNA samples from 53 unrelated French individuals of Caucasian origin. Several polymorphisms were identified, comprising a large deletion located in intron 1 (CYP4F12*v1), two isolated substitutions -402G>A (CYP4F12*v3) and -188 T>C (CYP4F12*v4) and nine combined mutations, -474T>C, -279A>C, -224A>G, -173G>A, -145C>G, -140T>C, -126T>C, -56T>C, and -21T>G (CYP4F12*v2). Considering the nature and location of the polymorphisms characterizing the CYP4F12*v1 and *v2, the functional relevance of those two allelic variants was further examined by transfecting different cell lines with constructs of the related region of the CYP4F12/luciferase reporter gene. Both alleles lead to a significant decrease of CYP4F12 gene expression in HepG2 cell line and, therefore, are likely to determine interindividual differences in CYP4F12 gene expression.


Subject(s)
Alleles , Aryl Hydrocarbon Hydroxylases/genetics , Mixed Function Oxygenases/genetics , Polymorphism, Genetic , Promoter Regions, Genetic , Base Sequence , DNA/analysis , Humans , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...