Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 17(9): 2411-2417, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36040247

ABSTRACT

Actinomycetes make a wealth of complex, structurally diverse natural products, and a key challenge is to link them to their biosynthetic gene clusters and delineate the reactions catalyzed by each of the enzymes. Here, we report the biosynthetic gene cluster for pyracrimycin A, a set of nine genes that includes a core nonribosomal peptide synthase (pymB) that utilizes serine and proline as precursors and a monooxygenase (pymC) that catalyzes Baeyer-Villiger oxidation. The cluster is similar to the one for brabantamide A; however, pyracrimycin A biosynthesis differs in that feeding experiments with isotope-labeled serine and proline suggest that a ring opening reaction takes place and a carbon is lost from serine downstream of the oxidation reaction. Based on these data, we propose a full biosynthesis pathway for pyracrimycin A.


Subject(s)
Biological Products , Streptomyces , Anti-Bacterial Agents/metabolism , Biological Products/metabolism , Carbon/metabolism , Mixed Function Oxygenases/metabolism , Multigene Family , Proline/metabolism , Pyrroles , Serine/metabolism , Streptomyces/metabolism
2.
FEMS Yeast Res ; 22(1)2022 04 08.
Article in English | MEDLINE | ID: mdl-35274684

ABSTRACT

Abscisic acid (ABA) is a phytohormone with applications in agriculture and human health. ABA can be produced by Botrytis cinerea, a plant pathogenic filamentous fungus. However, the cultivation process is lengthy and strain improvement by genetic engineering is difficult. Therefore, we engineered the oleaginous yeast Yarrowia lipolytica as an alternative host for ABA production. First, we expressed five B. cinerea genes involved in ABA biosynthesis (BcABA1,BcABA2,BcABA3,BcABA4 and BcCPR1) in a Y. lipolytica chassis with optimized mevalonate flux. The strain produced 59.2 mg/L of ABA in small-scale cultivation. Next, we expressed an additional copy of each gene in the strain, but only expression of additional copy of BcABA1 gene increased the ABA titer to 168.5 mg/L. We then integrated additional copies of the mevalonate pathway and ABA biosynthesis encoding genes, and we expressed plant ABA transporters resulting in an improved strain producing 263.5 mg/L and 9.1 mg/g dry cell weight (DCW) ABA. Bioreactor cultivation resulted in a specific yield of 12.8 mg/g DCW ABA; however, surprisingly, the biomass level obtained in bioreactors was only 10.5 g DCW/L, with a lower ABA titer of 133.6 mg/L. While further optimization is needed, this study confirms Y. lipolytica as a potential alternative host for the ABA production.


Subject(s)
Yarrowia , Abscisic Acid/metabolism , Bioreactors , Humans , Metabolic Engineering/methods , Mevalonic Acid/metabolism , Yarrowia/genetics , Yarrowia/metabolism
3.
Metab Eng ; 66: 1-11, 2021 07.
Article in English | MEDLINE | ID: mdl-33746070

ABSTRACT

The application of small amounts of natural plant growth hormones, such as gibberellins (GAs), can increase the productivity and quality of many vegetable and fruit crops. However, gibberellin growth hormones usage is limited by the high cost of their production, which is currently based on fermentation of a natural fungal producer Fusarium fujikuroi that produces a mix of several GAs. We explored the potential of the oleaginous yeast Yarrowia lipolytica to produce specific profiles of GAs. Firstly, the production of the GA-precursor ent-kaurenoic acid (KA) at 3.75 mg/L was achieved by expression of biosynthetic enzymes from the plant Arabidopsis thaliana and upregulation of the mevalonate (MVA) pathway. We then built a GA4-producing strain by extending the GA-biosynthetic pathway and upregulating the MVA-pathway further, resulting in 17.29 mg/L GA4. Additional expression of the F. fujikoroi GA-biosynthetic enzymes resulted in the production of GA7 (trace amounts) and GA3 (2.93 mg/L). Lastly, through protein engineering and the expression of additional KA-biosynthetic genes, we increased the GA3-production 4.4-fold resulting in 12.81 mg/L. The developed system presents a promising resource for the recombinant production of specific gibberellins, identifying bottlenecks in GA biosynthesis, and discovering new GA biosynthetic genes. CLASSIFICATION: Biological Sciences, Applied Biological Sciences.


Subject(s)
Fusarium , Gibberellins , Biosynthetic Pathways , Plant Growth Regulators/genetics
4.
Synth Syst Biotechnol ; 5(1): 11-18, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32021916

ABSTRACT

To accelerate the shift to bio-based production and overcome complicated functional implementation of natural and artificial biosynthetic pathways to industry relevant organisms, development of new, versatile, bio-based production platforms is required. Here we present a novel yeast-based platform for biosynthesis of bacterial aromatic polyketides. The platform is based on a synthetic polyketide synthase system enabling a first demonstration of bacterial aromatic polyketide biosynthesis in a eukaryotic host.

5.
Proc Natl Acad Sci U S A ; 116(41): 20366-20375, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548381

ABSTRACT

Streptomycetes serve as major producers of various pharmacologically and industrially important natural products. Although CRISPR-Cas9 systems have been developed for more robust genetic manipulations, concerns of genome instability caused by the DNA double-strand breaks (DSBs) and the toxicity of Cas9 remain. To overcome these limitations, here we report development of the DSB-free, single-nucleotide-resolution genome editing system CRISPR-BEST (CRISPR-Base Editing SysTem), which comprises a cytidine (CRISPR-cBEST) and an adenosine (CRISPR-aBEST) deaminase-based base editor. Specifically targeted by an sgRNA, CRISPR-cBEST can efficiently convert a C:G base pair to a T:A base pair and CRISPR-aBEST can convert an A:T base pair to a G:C base pair within a window of approximately 7 and 6 nucleotides, respectively. CRISPR-BEST was validated and successfully used in different Streptomyces species. Particularly in nonmodel actinomycete Streptomyces collinus Tü365, CRISPR-cBEST efficiently inactivated the 2 copies of kirN gene that are in the duplicated kirromycin biosynthetic pathways simultaneously by STOP codon introduction. Generating such a knockout mutant repeatedly failed using the conventional DSB-based CRISPR-Cas9. An unbiased, genome-wide off-target evaluation indicates the high fidelity and applicability of CRISPR-BEST. Furthermore, the system supports multiplexed editing with a single plasmid by providing a Csy4-based sgRNA processing machinery. To simplify the protospacer identification process, we also updated the CRISPy-web (https://crispy.secondarymetabolites.org), and now it allows designing sgRNAs specifically for CRISPR-BEST applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Streptomyces coelicolor/genetics , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Genome-Wide Association Study , Plasmids
6.
mSystems ; 1(3)2016.
Article in English | MEDLINE | ID: mdl-27822535

ABSTRACT

Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a species known to produce a broad spectrum of chemicals. The approach allowed us to identify new antibiotics and their associated biosynthetic pathways. Combining chemical analysis and genetics is an efficient "mining" workflow for identifying diverse pharmaceutical candidates in a broad range of microorganisms and therefore of great use in bioprospecting.

7.
J Nat Prod ; 78(7): 1518-25, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26132344

ABSTRACT

We present the results from stable isotope labeled precursor feeding studies combined with ultrahigh performance liquid chromatography-high resolution mass spectrometry for the identification of labeled polyketide (PK) end-products. Feeding experiments were performed with (13)C8-6-methylsalicylic acid (6-MSA) and (13)C14-YWA1, both produced in-house, as well as commercial (13)C7-benzoic acid and (2)H7-cinnamic acid, in species of Fusarium, Byssochlamys, Aspergillus, and Penicillium. Incorporation of 6-MSA into terreic acid or patulin was not observed in any of six evaluated species covering three genera, because the 6-MSA was shunted into (2Z,4E)-2-methyl-2,4-hexadienedioic acid. This indicates that patulin and terreic acid may be produced in a closed compartment of the cell and that (2Z,4E)-2-methyl-2,4-hexadienedioic acid is a detoxification product toward terreic acid and patulin. In Fusarium spp., YWA1 was shown to be incorporated into aurofusarin, rubrofusarin, and antibiotic Y. In A. niger, benzoic acid was shown to be incorporated into asperrubrol. Incorporation levels of 0.7-20% into the end-products were detected in wild-type strains. Thus, stable isotope labeling is a promising technique for investigation of polyketide biosynthesis and possible compartmentalization of toxic metabolites.


Subject(s)
Polyketides/chemistry , Algorithms , Aspergillus/chemistry , Fusarium/chemistry , Isotope Labeling , Molecular Structure , Patulin/chemistry , Pyrones/chemistry , Quinones/chemistry , Salicylates/chemistry
8.
Anal Chem ; 87(13): 6520-6, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26020678

ABSTRACT

Filamentous fungi are a rich source of bioactive compounds, ranging from statins over immunosuppressants to antibiotics. The coupling of genes to metabolites is of large commercial interest for production of the bioactives of the future. To this end, we have investigated the use of stable isotope labeled amino acids (SILAAs). SILAAs were added to the cultivation media of the filamentous fungus Aspergillus nidulans for the study of the cyclic tetrapeptide nidulanin A. Analysis by UHPLC-TOFMS confirmed that the SILAAs were incorporated into produced nidulanin A, and the change in observed m/z could be used to determine whether a compound (known or unknown) incorporated any of the added amino acids. Samples were then analyzed using MS/MS and the data used to perform molecular networking. The molecular network revealed several known and unknown compounds that were also labeled. Assisted by the isotope labeling, it was possible to determine the sequence of several of the compounds, one of which was the known metabolite fungisporin, not previously described in A. nidulans. Several novel analogues of nidulanin A and fungisporin were detected and tentatively identified, and it was determined that these metabolites were all produced by the same nonribosomal peptide synthase. The combination of stable isotope labeling and molecular network generation was shown to very effective for the automated detection of structurally related nonribosomal peptides, while the labeling was effective for determination of the peptide sequence, which could be used to provide information on biosynthesis of bioactive compounds.


Subject(s)
Isotope Labeling , Aspergillus nidulans/metabolism , Chromatography, High Pressure Liquid , Mass Spectrometry
9.
Mar Drugs ; 12(6): 3681-705, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24955556

ABSTRACT

In drug discovery, reliable and fast dereplication of known compounds is essential for identification of novel bioactive compounds. Here, we show an integrated approach using ultra-high performance liquid chromatography-diode array detection-quadrupole time of flight mass spectrometry (UHPLC-DAD-QTOFMS) providing both accurate mass full-scan mass spectrometry (MS) and tandem high resolution MS (MS/HRMS) data. The methodology was demonstrated on compounds from bioactive marine-derived strains of Aspergillus, Penicillium, and Emericellopsis, including small polyketides, non-ribosomal peptides, terpenes, and meroterpenoids. The MS/HRMS data were then searched against an in-house MS/HRMS library of ~1300 compounds for unambiguous identification. The full scan MS data was used for dereplication of compounds not in the MS/HRMS library, combined with ultraviolet/visual (UV/Vis) and MS/HRMS data for faster exclusion of database search results. This led to the identification of four novel isomers of the known anticancer compound, asperphenamate. Except for very low intensity peaks, no false negatives were found using the MS/HRMS approach, which proved to be robust against poor data quality caused by system overload or loss of lock-mass. Only for small polyketides, like patulin, were both retention time and UV/Vis spectra necessary for unambiguous identification. For the ophiobolin family with many structurally similar analogues partly co-eluting, the peaks could be assigned correctly by combining MS/HRMS data and m/z of the [M + Na]+ ions.


Subject(s)
Ascomycota/metabolism , Aspergillus/metabolism , Chromatography, High Pressure Liquid/methods , Penicillium/metabolism , Ascomycota/isolation & purification , Aspergillus/isolation & purification , Biological Products/analysis , Biological Products/chemistry , Biological Products/isolation & purification , Mass Spectrometry/methods , Penicillium/isolation & purification , Reproducibility of Results , Secondary Metabolism , Tandem Mass Spectrometry/methods
10.
Chem Biol ; 21(4): 519-529, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24684908

ABSTRACT

Secondary metabolites in filamentous fungi constitute a rich source of bioactive molecules. We have deduced the genetic and biosynthetic pathway of the antibiotic yanuthone D from Aspergillus niger. Our analyses show that yanuthone D is a meroterpenoid derived from the polyketide 6-methylsalicylic acid (6-MSA). Yanuthone D formation depends on a cluster composed of ten genes including yanA and yanI, which encode a 6-MSA polyketide synthase and a previously undescribed O-mevalon transferase, respectively. In addition, several branching points in the pathway were discovered, revealing five yanuthones (F, G, H, I, and J). Furthermore, we have identified another compound (yanuthone X1) that defines a class of yanuthones that depend on several enzymatic activities encoded by genes in the yan cluster but that are not derived from 6-MSA.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Aspergillus niger/metabolism , Salicylates/chemistry , Small Molecule Libraries/chemistry , Terpenes/chemistry , Terpenes/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Anti-Bacterial Agents/pharmacology , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Aspergillus niger/chemistry , Candida albicans/drug effects , Dose-Response Relationship, Drug , Ligases/genetics , Ligases/metabolism , Microbial Sensitivity Tests , Molecular Structure , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
11.
Anal Bioanal Chem ; 406(7): 1933-43, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24442010

ABSTRACT

In natural-product drug discovery, finding new compounds is the main task, and thus fast dereplication of known compounds is essential. This is usually performed by manual liquid chromatography-ultraviolet (LC-UV) or visible light-mass spectroscopy (Vis-MS) interpretation of detected peaks, often assisted by automated identification of previously identified compounds. We used a 15 min high-performance liquid chromatography-diode array detection (UHPLC-DAD)-high-resolution MS method (electrospray ionization (ESI)(+) or ESI(-)), followed by 10-60 s of automated data analysis for up to 3000 relevant elemental compositions. By overlaying automatically generated extracted-ion chromatograms from detected compounds on the base peak chromatogram, all major potentially novel peaks could be visualized. Peaks corresponding to compounds available as reference standards, previously identified compounds, and major contaminants from solvents, media, filters etc. were labeled to differentiate these from compounds only identified by elemental composition. This enabled fast manual evaluation of both known peaks and potential novel-compound peaks, by manual verification of: the adduct pattern, UV-Vis, retention time compared with log D, co-identified biosynthetic related compounds, and elution order. System performance, including adduct patterns, in-source fragmentation, and ion-cooler bias, was investigated on reference standards, and the overall method was used on extracts of Aspergillus carbonarius and Penicillium melanoconidium, revealing new nitrogen-containing biomarkers for both species.


Subject(s)
Biological Products/analysis , Chromatography, High Pressure Liquid/methods , Databases, Factual , Drug Discovery/methods , Fungi/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Biological Products/chemistry , Biological Products/metabolism , Chromatography, High Pressure Liquid/instrumentation , Secondary Metabolism , Spectrometry, Mass, Electrospray Ionization/instrumentation
12.
Proc Natl Acad Sci U S A ; 110(1): E99-107, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23248299

ABSTRACT

Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross-chemistry between physically separate gene clusters (superclusters), and validate this both with legacy data and experimentally by prediction and verification of a supercluster consisting of the synthase AN1242 and the prenyltransferase AN11080, as well as identification of the product compound nidulanin A. We have used A. nidulans for our method development and validation due to the wealth of available biochemical data, but the method can be applied to any fungus with a sequenced and assembled genome, thus supporting further secondary metabolite pathway elucidation in the fungal kingdom.


Subject(s)
Aspergillus nidulans/genetics , Biosynthetic Pathways/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Fungal/genetics , Metabolome/genetics , Multigene Family/genetics , Cluster Analysis , Microarray Analysis/methods , Polyketide Synthases/genetics , Tandem Mass Spectrometry , Xanthines/chemistry , Xanthines/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...