Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 200(9): 848-861, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836604

ABSTRACT

Due to wide prevalence of electromagnetic field (EMF) sources in human surrounding, EMF-level measurements and corresponding exposure assessment have imposed as an important topic. With an intention to present an approach to the long-term exposure assessment in EMF RATEL network, this paper conveys a high-level statistical analysis of the high-frequency exposure data, acquired during the 5-y time period, for the case study of monitoring sensor installed in the area of the Novi Sad University campus. Time series of exposure values were averaged on a daily, weekly, and monthly basis, and their yearly comparison was performed. Results showed clear differences between the day and night hours, as well between working and weekend days. Regarding exposure values, averaged on the monthly basis, the impact of COVID-19 pandemic in 2020 and 2021 can be noticed. Finally, the highest obtained exposure values (electric field squared) were 22 times below the maximal allowable level, according to the Serbian legislation.


Subject(s)
COVID-19 , Electromagnetic Fields , Radiation Monitoring , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/transmission , Radiation Monitoring/methods , Universities , Serbia , Pandemics , Environmental Exposure/analysis
2.
Entropy (Basel) ; 24(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35626609

ABSTRACT

This work investigates the temporal statistical structure of time series of electric field (EF) intensity recorded with the aim of exploring the dynamical patterns associated with periods with different human activity in urban areas. The analyzed time series were obtained from a sensor of the EMF RATEL monitoring system installed in the campus area of the University of Novi Sad, Serbia. The sensor performs wideband cumulative EF intensity monitoring of all active commercial EF sources, thus including those linked to human utilization of wireless communication systems. Monitoring was performed continuously during the years 2019 and 2020, allowing us to investigate the effects on the patterns of EF intensity of varying conditions of human mobility, including regular teaching and exam activity within the campus, as well as limitations to mobility related to the COVID-19 pandemic. Time series analysis was performed using both simple statistics (mean and variance) and combining the information-theoretic measure of information storage (IS) with the method of surrogate data to quantify the regularity of EF dynamic patterns and detect the presence of nonlinear dynamics. Moreover, to assess the possible coexistence of dynamic behaviors across multiple temporal scales, IS analysis was performed over consecutive observation windows lasting one day, week, month, and year, respectively coarse grained at time scales of 6 min, 30 min, 2 h, and 1 day. Our results document that the EF intensity patterns of variability are modulated by the movement of people at daily, weekly, and monthly scales, and are blunted during periods of restricted mobility related to the COVID-19 pandemic. Mobility restrictions also affected significantly the regularity of the EF intensity time series, resulting in lower values of IS observed simultaneously with a loss of nonlinear dynamics. Thus, our analysis can be useful to investigate changes in the global patterns of human mobility both during pandemics or other types of events, and from this perspective may serve to implement strategies for safety assessment and for optimizing the design of networks of EF sensors.

3.
Environ Sci Pollut Res Int ; 27(13): 14735-14750, 2020 May.
Article in English | MEDLINE | ID: mdl-32052328

ABSTRACT

Following an increasing number of artificial electromagnetic field (EMF) sources in human surrounding, a number of research studies have been devoted to the issue of environmental EMF pollution. A particular attention has been attributed to the highly sensitive EMF zones, where people can stay for a longer period of time, which, among others, includes university campuses. Thus, the modern approach of long-term EMF monitoring has been established, carrying out cumulative field strength measurements at locations that are most visited by student population and university staff. The goal was to establish periodic and systematic EMF investigation over such highly sensitive areas, through a standardized procedure for EMF monitoring. In this paper, details about two EMF monitoring campaigns over the University of Novi Sad campus were presented, performing comparative analysis of their results. The obtained results revealed the increase (up to four times) of the cumulative field strength values, as well as the general population exposure, at specific locations. Between these two campaigns, the emergence of the new base station, as well as numerous Wi-Fi networks, was noticed in the campus. Consequently, the highest field strength values were acquired at two locations, most directly exposed to the main beams of base station's antennas, although all obtained values were at least five times lower than the minimal reference levels prescribed by the Serbian legislation. Even though such results are acceptable, the future monitoring campaigns should be planned, particularly since the installation of new EMF sources are expected in the campus of the University of Novi Sad.


Subject(s)
Electromagnetic Fields , Environmental Exposure , Environmental Pollution , Humans , Universities
4.
Environ Monit Assess ; 187(4): 191, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25787169

ABSTRACT

Wireless networks traffic has experienced a considerable growth in recent years. Likewise, it is to be expected that billions of objects will be connected to the Internet in years to come, many of them wirelessly. Such increase in a number of wireless connections and the inevitability of wireless communications in proximity of users highlight the healthcare concern on electromagnetic field (EMF) exposure. Thus, the intelligent monitoring systems, such as the Serbian Electromagnetic Field Monitoring Network-SEMONT-have been required to be developed and utilized for continuous and real-time EMF monitoring, as well as for the assessment of the potential in situ daily exposure of population. This paper presents the results of the SEMONT initial campaign of continuous monitoring of the high-frequency electric field strength over the campus of the University of Novi Sad, as an open area environment. Several locations, most frequently visited by the student population in their everyday activities, have been monitored during the rush hour in order to determine the fluctuation of daily exposure on this, usually considered, highly sensitive area. The results of monitoring suggest that potential exposure is far below the allowable limit, regarding reference levels prescribed by the Serbian legislation for the general population.


Subject(s)
Electromagnetic Fields , Environmental Exposure/analysis , Environment , Environmental Exposure/statistics & numerical data , Environmental Monitoring
5.
Environ Monit Assess ; 186(3): 1865-74, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24197559

ABSTRACT

The measurement procedure of the open area in situ electric field strength is presented, acquiring the real field data for testing of the Serbian electromagnetic field monitoring network (SEMONT) and its Internet portal. The SEMONT monitoring system introduces an advanced approach of wireless sensor network utilization for the continuous supervision of overall and cumulative level of electromagnetic field over the observed area. The aim of the SEMONT system is to become a useful tool for the national and municipal agencies for the environmental protection, regarding the electromagnetic pollution monitoring and the exposure assessment of the general population. Considering the public concern on the potentially harmful effects of the long-term exposure to electromagnetic radiation, as well as the public transparency principle that is incorporated into the Serbian law on non-ionizing radiation protection, the SEMONT monitoring system is designed for the long-term continuous monitoring, presenting real-time measurement results, and corresponding exposure assessment over the public Internet network.


Subject(s)
Electromagnetic Fields , Electromagnetic Radiation , Radiation Monitoring/methods , Environmental Exposure/statistics & numerical data , Humans , Internet , Radiation Dosage , Radiation Monitoring/instrumentation , Wireless Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...