Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Geochim Cosmochim Acta ; 57: 1551-66, 1993.
Article in English | MEDLINE | ID: mdl-11539451

ABSTRACT

We have studied nineteen anhydrous chondritic interplanetary dust particles (IDPs) using analytical electron microscopy. We have determined a method for quantitative light element EDX analysis of small particles and have applied these techniques to a group of IDPs. Our results show that some IDPs have significantly higher bulk carbon abundances than do carbonaceous chondrites. We have also identified a relationship between carbon abundance and silicate mineralogy in our set of anhydrous IDPs. In general, these particles are dominated by pyroxene, olivine, or a subequal mixture of olivine and pyroxene. The pyroxene-dominated IDPs have a higher carbon abundance than those dominated by olivines. Members of the mixed mineralogy IDPs can be grouped with either the pyroxene- or olivine-dominated particles based on their carbon abundance. The high carbon, pyroxene-dominated particles have primitive mineralogies and bulk compositions which show strong similarities to cometary dust particles. We believe that the lower carbon, olivine-dominated IDPs are probably derived from asteroids. Based on carbon abundances, the mixed-mineralogy group represents particles derived from either comets or asteroids. We believe that the high carbon, pyroxene-rich anhydrous IDPs are the best candidates for cometary dust.


Subject(s)
Carbon/chemistry , Cosmic Dust/analysis , Minerals/chemistry , Silicates/chemistry , Software , Astronomy/methods , Extraterrestrial Environment , Iron Compounds/chemistry , Magnesium Compounds/chemistry , Meteoroids , Microscopy, Electron , Minor Planets
SELECTION OF CITATIONS
SEARCH DETAIL
...