Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 130(5): 3107-14, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22087939

ABSTRACT

The auditory filter shape of delphinid odontocetes was previously considered to be typically mammalian constant-quality in which filter bandwidths increase proportionally with frequency. Recent studies with porpoises demonstrate constant-bandwidth portions of the auditory filter. The critical ratios for a bottlenose dolphin were measured between 40 and 120 kHz by behaviorally determining the subject's ability to detect pure tones in the presence of white noise. Critical ratios as a function of frequency were constant, indicating the auditory filter acts as a constant-bandwidth system in this frequency range. Re-analysis of past studies supports these findings, and suggests the delphinid auditory system is best characterized as a constant-Q system below 40 kHz and a constant-bandwidth-like system between 40 kHz and 120 kHz before returning to a constant Q pattern at the highest frequencies.


Subject(s)
Auditory Perception , Behavior, Animal , Bottle-Nosed Dolphin/psychology , Acoustic Stimulation , Animals , Audiometry, Pure-Tone , Auditory Threshold , Female , Noise/adverse effects , Perceptual Masking , Psychoacoustics , Signal Detection, Psychological
2.
J Exp Biol ; 213(Pt 21): 3717-22, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20952621

ABSTRACT

Toothed whales and dolphins possess a hypertrophied auditory system that allows for the production and hearing of ultrasonic signals. Although the fossil record provides information on the evolution of the auditory structures found in extant odontocetes, it cannot provide information on the evolutionary pressures leading to the hypertrophied auditory system. Investigating the effect of hearing loss may provide evidence for the reason for the development of high-frequency hearing in echolocating animals by demonstrating how high-frequency hearing assists in the functioning echolocation system. The discrimination abilities of a false killer whale (Pseudorca crassidens) were measured prior to and after documented high-frequency hearing loss. In 1992, the subject had good hearing and could hear at frequencies up to 100 kHz. In 2008, the subject had lost hearing at frequencies above 40 kHz. First in 1992, and then again in 2008, the subject performed an identical echolocation task, discriminating between machined hollow aluminum cylinder targets of differing wall thickness. Performances were recorded for individual target differences and compared between both experimental years. Performances on individual targets dropped between 1992 and 2008, with a maximum performance reduction of 36.1%. These data indicate that, with a loss in high-frequency hearing, there was a concomitant reduction in echolocation discrimination ability, and suggest that the development of a hypertrophied auditory system capable of hearing at ultrasonic frequencies evolved in response to pressures for fine-scale echolocation discrimination.


Subject(s)
Dolphins/physiology , Echolocation/physiology , Hearing Loss, High-Frequency/physiopathology , Animals , Audiometry , Female , Linear Models , Models, Biological
3.
J Exp Biol ; 213(Pt 18): 3138-43, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20802115

ABSTRACT

Long-finned pilot whales are highly social odontocetes found in temperate and subpolar regions. This species is particularly known for its interaction with fisheries as well as its mass strandings. Recent tagging work has provided some information about pilot whales in the wild but, even though they have been successfully kept in captivity, little is known about their sensory capabilities. This study investigates the hearing abilities of a rehabilitated 2 year old male long-finned pilot whale. A complete audiogram was collected using auditory evoked potential techniques that included measurements of nine frequencies from 4 to 100 kHz presented as sinusoidally amplitude-modulated tones. The results indicated that the region of best hearing was between 11.2 and 50 kHz and the subject had relatively poor high frequency hearing compared with other odontocete species. This study emphasizes the importance of collecting basic hearing measurements from new species, understanding diagnostic life histories as well as continuously increasing the sample size of audiometry measurements within and between odontocete species as animals become available.


Subject(s)
Evoked Potentials, Auditory/physiology , Hearing/physiology , Whales, Pilot/physiology , Acoustic Stimulation , Animals , Audiometry/methods , Electrophysiology , Hearing Tests , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...