Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Circulation ; 104(1): 91-6, 2001 Jul 03.
Article in English | MEDLINE | ID: mdl-11435344

ABSTRACT

BACKGROUND: Constrictive vascular remodeling (VR) is the most significant component of restenosis after balloon angioplasty (PTA). Whereas in physiological conditions VR is associated with normalization of shear stress (SS) and wall stress (WS), after PTA the role of SS and WS in VR is unknown. Furthermore, whereas matrix metalloproteinase inhibition (MMPI) has been shown to modulate VR after PTA, its effect on the SS and WS control mechanisms after PTA is unknown. METHODS AND RESULTS: PTA was performed in external iliac arteries of 12 atherosclerotic Yucatan pigs, of which 6 pigs (7 vessels) received the MMPI batimastat and 6 pigs (10 vessels) served as controls. Before and after the intervention and at 6-week follow-up, intravascular ultrasound pullback was performed, allowing 3D reconstruction of the treated segment and computational fluid dynamics to calculate the media-bounded area and SS. WS was derived from the Laplace formula. Immediately after PTA, media-bounded area, WS, and SS changed by 20%, 16%, and -49%, respectively, in both groups. VR was predicted by SS and WS. In the control group, SS and WS had been normalized at follow-up with respect to the reference segment. In contrast, for the batimastat group, the SS had been normalized, but not the WS. The latter is attributed to an increase in wall area at follow-up. CONCLUSIONS: Vascular remodeling after PTA is controlled by both SS and WS. MMPI inhibited the WS control system.


Subject(s)
Angioplasty, Balloon , Arteriosclerosis/physiopathology , Matrix Metalloproteinase Inhibitors , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Thiophenes/pharmacology , Tunica Intima/drug effects , Animals , Arteriosclerosis/pathology , Arteriosclerosis/therapy , Feedback , Hemorheology , Iliac Artery/diagnostic imaging , Iliac Artery/drug effects , Iliac Artery/surgery , Matrix Metalloproteinases/metabolism , Models, Cardiovascular , Protease Inhibitors/pharmacology , Regression Analysis , Stress, Mechanical , Swine, Miniature , Tunica Intima/pathology , Ultrasonography , Vascular Patency/drug effects
2.
Circulation ; 103(13): 1740-5, 2001 Apr 03.
Article in English | MEDLINE | ID: mdl-11282904

ABSTRACT

BACKGROUND: In-stent restenosis by excessive intimal hyperplasia reduces the long-term clinical efficacy of coronary stents. Because shear stress (SS) is related to plaque growth in atherosclerosis, we investigated whether variations in SS distribution are related to variations in neointima formation. METHODS AND RESULTS: In 14 patients, at 6-month follow-up after coronary Wallstent implantation, 3D stent and vessel reconstruction was performed with a combined angiographic and intravascular ultrasound technique (ANGUS). The bare stent reconstruction was used to calculate in-stent SS at implantation, applying computational fluid dynamics. The flow was selected to deliver an average SS of 1.5 N/m(2). SS and neointimal thickness (Th) values were obtained with a resolution of 90 degrees in the circumferential and 2.5 mm in the longitudinal direction. For each vessel, the relationship between Th and SS was obtained by linear regression analysis. Averaging the individual slopes and intercepts of the regression lines summarized the overall relationship. Average Th was 0.44+/-0.20 mm. Th was inversely related to SS: Th=(0.59+/-0.24)-(0.08+/-0.10)xSS (mm) (P<0.05). CONCLUSIONS: These data show for the first time in vivo that the Th variations in Wallstents at 6-month follow-up are inversely related to the relative SS distribution. These findings support a hemodynamic mechanism underlying in-stent neointimal hyperplasia formation.


Subject(s)
Coronary Vessels/pathology , Stents/adverse effects , Tunica Intima/pathology , Coronary Circulation , Coronary Vessels/surgery , Female , Follow-Up Studies , Hemodynamics , Humans , Hyperplasia/pathology , Male , Middle Aged , Stress, Mechanical
3.
Circulation ; 102(5): 511-6, 2000 Aug 01.
Article in English | MEDLINE | ID: mdl-10920062

ABSTRACT

BACKGROUND: True 3D reconstruction of coronary arteries in patients based on intravascular ultrasound (IVUS) may be achieved by fusing angiographic and IVUS information (ANGUS). The clinical applicability of ANGUS was tested, and its accuracy was evaluated quantitatively. METHODS AND REUSLTS: In 16 patients who were investigated 6 months after stent implantation, a sheath-based catheter was used to acquire IVUS images during an R-wave-triggered, motorized stepped pullback. First, a single set of end-diastolic biplane angiographic images documented the 3D location of the catheter at the beginning of pullback. From this set, the 3D pullback trajectory was predicted. Second, contours of the lumen or stent obtained from IVUS were fused with the 3D trajectory. Third, the angular rotation of the reconstruction was optimized by quantitative matching of the silhouettes of the 3D reconstruction with the actual biplane images. Reconstructions were obtained in 12 patients. The number of pullback steps, which determines the pullback length, closely agreed with the reconstructed path length (r=0.99). Geometric measurements in silhouette images of the 3D reconstructions showed high correlation (0.84 to 0.97) with corresponding measurements in the actual biplane angiographic images. CONCLUSIONS: With ANGUS, 3D reconstructions of coronary arteries can be successfully and accurately obtained in the majority of patients.


Subject(s)
Coronary Angiography/methods , Coronary Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Image Processing, Computer-Assisted/methods , Ultrasonography, Interventional/methods , Coronary Vessels/anatomy & histology , Humans , Models, Cardiovascular , Reproducibility of Results
4.
Semin Interv Cardiol ; 3(1): 39-44, 1998 Mar.
Article in English | MEDLINE | ID: mdl-10094183

ABSTRACT

Shear stress plays a role in lipid accumulation in primary atherosclerosis and vascular remodelling. We will present applications of a new technique, which enables to quantify shear stress in 3D vessel reconstructions. The method is based on 3D IVUS reconstructions of blood vessels either obtained by IVUS pull back (external iliac artery) or by a combination of angiography and IVUS (curved coronary artery). Distribution of wall thickness of a curved human right coronary artery was such that low wall thickness occurred where shear stress was high, and wall thickness was high where shear stress was low. Consequently, an inverse relationship between shear stress and wall thickness was detected. Although vascular remodelling after PTA in external iliac arteries of atherosclerotic Yucatan pigs was predicted both by acute gain and decrements in shear stress, the decrement in shear stress appeared a better predictor. In conclusion, shear stress appears to play a role in primary atherosclerosis and vascular remodelling after PTA.


Subject(s)
Arteries/physiopathology , Arteriosclerosis/physiopathology , Adaptation, Physiological , Animals , Arteries/metabolism , Arteriosclerosis/diagnostic imaging , Arteriosclerosis/metabolism , Biomechanical Phenomena , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/metabolism , Coronary Artery Disease/physiopathology , Humans , Iliac Artery/diagnostic imaging , Iliac Artery/physiopathology , Image Processing, Computer-Assisted , Lipid Metabolism , Rheology , Stress, Mechanical , Swine , Ultrasonography, Interventional
SELECTION OF CITATIONS
SEARCH DETAIL
...