Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Med Imaging Graph ; 67: 9-20, 2018 07.
Article in English | MEDLINE | ID: mdl-29684663

ABSTRACT

The incidence of Barrett cancer is increasing rapidly and current screening protocols often miss the disease at an early, treatable stage. Volumetric Laser Endomicroscopy (VLE) is a promising new tool for finding this type of cancer early, capturing a full circumferential scan of Barrett's Esophagus (BE), up to 3-mm depth. However, the interpretation of these VLE scans can be complicated, due to the large amount of cross-sectional images and the subtle grayscale variations. Therefore, algorithms for automated analysis of VLE data can offer a valuable contribution to its overall interpretation. In this study, we broadly investigate the potential of Computer-Aided Detection (CADe) for the identification of early Barrett's cancer using VLE. We employ a histopathologically validated set of ex-vivo VLE images for evaluating and comparing a considerable set of widely-used image features and machine learning algorithms. In addition, we show that incorporating clinical knowledge in feature design, leads to a superior classification performance and additional benefits, such as low complexity and fast computation time. Furthermore, we identify an optimal tissue depth for classification of 0.5-1.0 mm, and propose an extension to the evaluated features that exploits this phenomenon, improving their predictive properties for cancer detection in VLE data. Finally, we compare the performance of the CADe methods with the classification accuracy of two VLE experts. With a maximum Area Under the Curve (AUC) in the range of 0.90-0.93 for the evaluated features and machine learning methods versus an AUC of 0.81 for the medical experts, our experiments show that computer-aided methods can achieve a considerably better performance than trained human observers in the analysis of VLE data.


Subject(s)
Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Algorithms , Barrett Esophagus/diagnostic imaging , Barrett Esophagus/pathology , Diagnosis, Computer-Assisted , Early Detection of Cancer/methods , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/pathology , Precancerous Conditions/diagnostic imaging , Precancerous Conditions/pathology , Tomography, Optical Coherence , Benchmarking , Esophagoscopy , Humans , Image Processing, Computer-Assisted
2.
Gastrointest Endosc ; 86(5): 839-846, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28322771

ABSTRACT

BACKGROUND AND AIMS: Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett's esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images. METHODS: We used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation. RESULTS: Three novel clinically inspired algorithm features were developed. The feature "layering and signal decay statistics" showed the optimal performance compared with the other clinically features ("layering" and "signal intensity distribution") and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81). CONCLUSIONS: This is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm.


Subject(s)
Adenocarcinoma/pathology , Barrett Esophagus/pathology , Esophageal Neoplasms/pathology , Esophagoscopy/methods , Esophagus/pathology , Microscopy, Confocal/methods , Adenocarcinoma/diagnosis , Aged , Algorithms , Barrett Esophagus/diagnosis , Case-Control Studies , Diagnosis, Computer-Assisted/methods , Esophageal Neoplasms/diagnosis , Female , Humans , Image Interpretation, Computer-Assisted/methods , Machine Learning , Male , Middle Aged , ROC Curve , Reproducibility of Results , Sensitivity and Specificity , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL