Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
EBioMedicine ; 96: 104809, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37738832

ABSTRACT

BACKGROUND: The intestine of children with severe malnutrition (SM) shows structural and functional changes that are linked to increased infection and mortality. SM dysregulates the tryptophan-kynurenine pathway, which may impact processes such as SIRT1- and mTORC1-mediated autophagy and mitochondrial homeostasis. Using a mouse and organoid model of SM, we studied the repercussions of these dysregulations on malnutrition enteropathy and the protective capacity of maintaining autophagy activity and mitochondrial health. METHODS: SM was induced through feeding male weanling C57BL/6 mice a low protein diet (LPD) for 14-days. Mice were either treated with the NAD+-precursor, nicotinamide; an mTORC1-inhibitor, rapamycin; a SIRT1-activator, resveratrol; or SIRT1-inhibitor, EX-527. Malnutrition enteropathy was induced in enteric organoids through amino-acid deprivation. Features of and pathways to malnutrition enteropathy were examined, including paracellular permeability, nutrient absorption, and autophagic, mitochondrial, and reactive-oxygen-species (ROS) abnormalities. FINDINGS: LPD-feeding and ensuing low-tryptophan availability led to villus atrophy, nutrient malabsorption, and intestinal barrier dysfunction. In LPD-fed mice, nicotinamide-supplementation was linked to SIRT1-mediated activation of mitophagy, which reduced damaged mitochondria, and improved intestinal barrier function. Inhibition of mTORC1 reduced intestinal barrier dysfunction and nutrient malabsorption. Findings were validated and extended using an organoid model, demonstrating that resolution of mitochondrial ROS resolved barrier dysfunction. INTERPRETATION: Malnutrition enteropathy arises from a dysregulation of the SIRT1 and mTORC1 pathways, leading to disrupted autophagy, mitochondrial homeostasis, and ROS. Whether nicotinamide-supplementation in children with SM could ameliorate malnutrition enteropathy should be explored in clinical trials. FUNDING: This work was supported by the Bill and Melinda Gates Foundation, the Sickkids Research Institute, the Canadian Institutes of Health Research, and the University Medical Center Groningen.

2.
J Physiol ; 601(10): 1761-1780, 2023 05.
Article in English | MEDLINE | ID: mdl-37010236

ABSTRACT

Hyperglycaemia in pregnancy (HIP) is a pregnancy complication characterized by mild to moderate hyperglycaemia that negatively impacts short- and long-term health of mother and child. However, relationships between severity and timing of pregnancy hyperglycaemia and postpartum outcomes have not been systemically investigated. We investigated the impact of hyperglycaemia developing during pregnancy (gestational diabetes mellitus, GDM) or already present pre-mating (pre-gestational diabetes mellitus, PDM) on maternal health and pregnancy outcomes. GDM and PDM were induced in C57BL/6NTac mice by combined 60% high fat diet (HF) and low dose streptozotocin (STZ). Animals were screened for PDM prior to mating, and all underwent an oral glucose tolerance test on gestational day (GD)15. Tissues were collected at GD18 or at postnatal day (PN)15. Among HFSTZ-treated dams, 34% developed PDM and 66% developed GDM, characterized by impaired glucose-induced insulin release and inadequate suppression of endogenous glucose production. No increased adiposity or overt insulin resistance was observed. Furthermore, markers of non-alcoholic fatty liver disease (NAFLD) were significantly increased in PDM at GD18 and were positively correlated with basal glucose levels at GD18 in GDM dams. By PN15, NAFLD markers were also increased in GDM dams. Only PDM affected pregnancy outcomes such as litter size. Our findings indicate that GDM and PDM, resulting in disturbances of maternal glucose homeostasis, increase the risk of postpartum NAFLD development, related to the onset and severity of pregnancy hyperglycaemia. These findings signal a need for earlier monitoring of maternal glycaemia and more rigorous follow-up of maternal health after GDM and PDM pregnancy in humans. KEY POINTS: We studied the impact of high-fat diet/streptozotocin induced hyperglycaemia in pregnancy in mice and found that this impaired glucose tolerance and insulin release. Litter size and embryo survival were compromised by pre-gestational, but not by gestational, diabetes. Despite postpartum recovery from hyperglycaemia in a majority of dams, liver disease markers were further elevated by postnatal day 15. Maternal liver disease markers were associated with the severity of hyperglycaemia at gestational day 18. The association between hyperglycaemic exposure and non-alcoholic fatty liver disease signals a need for more rigorous monitoring and follow-up of maternal glycaemia and health in diabetic pregnancy in humans.


Subject(s)
Diabetes, Gestational , Hyperglycemia , Non-alcoholic Fatty Liver Disease , Humans , Pregnancy , Female , Child , Mice , Animals , Hyperglycemia/complications , Pregnancy Outcome , Streptozocin/adverse effects , Mice, Inbred C57BL , Insulin , Glucose/metabolism , Lactation
3.
Biomed Pharmacother ; 159: 114270, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36680812

ABSTRACT

The RAS-MAPK signaling pathway is one of the most frequently dysregulated pathways in human cancer. Small molecule inhibitors directed against this pathway have clinical activity in patients with various cancer types and can improve patient outcomes. However, the use of these drugs is associated with adverse effects, which can result in dose reduction or treatment interruption. A better molecular understanding of on-target, off-tumor effects may improve toxicity management. In the present study, we aimed to identify early initiating biological changes in the liver upon pharmacological inhibition of the RAS-MAPK signaling pathway. To this end, we tested the effect of MEK inhibitor PD0325901 using mice and human hepatocyte cell lines. Male C57BL/6 mice were treated with either vehicle or PD0325901 for six days, followed by transcriptome analysis of the liver and phenotypic characterization. Pharmacological MEK inhibition altered the expression of 423 genes, of which 78 were upregulated and 345 were downregulated. We identified Shp, a transcriptional repressor, and Cyp7a1, the rate-limiting enzyme in converting cholesterol to bile acids, as the top differentially expressed genes. PD0325901 treatment also affected other genes involved in bile acid regulation, which was associated with changes in the composition of plasma bile acids and composition and total levels of fecal bile acids and elevated predictive biomarkers of early liver toxicity. In conclusion, short-term pharmacological MEK inhibition results in profound changes in bile acid metabolism, which may explain some of the clinical adverse effects of pharmacological inhibition of the RAS-MAPK pathway, including gastrointestinal complications and hepatotoxicity.


Subject(s)
Liver , Receptors, Cytoplasmic and Nuclear , Animals , Humans , Male , Mice , Bile Acids and Salts/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase Kinases/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction
4.
Pharmacol Res ; 187: 106634, 2023 01.
Article in English | MEDLINE | ID: mdl-36574856

ABSTRACT

Activation of brown adipose tissue (BAT) with the ß3-adrenergic receptor agonist CL316,243 protects mice from atherosclerosis development, and the presence of metabolically active BAT is associated with cardiometabolic health in humans. In contrast, exposure to cold or treatment with the clinically used ß3-adrenergic receptor agonist mirabegron to activate BAT exacerbates atherosclerosis in apolipoprotein E (ApoE)- and low-density lipoprotein receptor (LDLR)-deficient mice, both lacking a functional ApoE-LDLR pathway crucial for lipoprotein remnant clearance. We, therefore, investigated the effects of mirabegron treatment on dyslipidemia and atherosclerosis development in APOE*3-Leiden.CETP mice, a humanized lipoprotein metabolism model with a functional ApoE-LDLR clearance pathway. Mirabegron activated BAT and induced white adipose tissue (WAT) browning, accompanied by selectively increased fat oxidation and attenuated fat mass gain. Mirabegron increased the uptake of fatty acids derived from triglyceride (TG)-rich lipoproteins by BAT and WAT, which was coupled to increased hepatic uptake of the generated cholesterol-enriched core remnants. Mirabegron also promoted hepatic very low-density lipoprotein (VLDL) production, likely due to an increased flux of fatty acids from WAT to the liver, and resulted in transient elevation in plasma TG levels followed by a substantial decrease in plasma TGs. These effects led to a trend toward lower plasma cholesterol levels and reduced atherosclerosis. We conclude that BAT activation by mirabegron leads to substantial metabolic benefits in APOE*3-Leiden.CETP mice, and mirabegron treatment is certainly not atherogenic. These data underscore the importance of the choice of experimental models when investigating the effect of BAT activation on lipoprotein metabolism and atherosclerosis.


Subject(s)
Adipose Tissue, Brown , Atherosclerosis , Animals , Humans , Mice , Adrenergic Agonists/metabolism , Adrenergic Agonists/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cholesterol/metabolism , Fatty Acids/metabolism , Lipoproteins, LDL/metabolism , Liver/metabolism , Triglycerides , Receptors, LDL/metabolism
5.
Arterioscler Thromb Vasc Biol ; 43(1): e29-e45, 2023 01.
Article in English | MEDLINE | ID: mdl-36353989

ABSTRACT

BACKGROUND: The copper metabolism MURR1 domains/coiled-coil domain containing 22/coiled-coil domain containing 93 (CCC) complex is required for the transport of low-density lipoprotein receptor (LDLR) and LRP1 (LDLR-related protein 1) from endosomes to the cell surface of hepatocytes. Impaired functioning of hepatocytic CCC causes hypercholesterolemia in mice, dogs, and humans. Retriever, a protein complex consisting of subunits VPS26C, VPS35L, and VPS29, is associated with CCC, but its role in endosomal lipoprotein receptor transport is unclear. We here investigated the contribution of retriever to hepatocytic lipoprotein receptor recycling and plasma lipids regulation. METHODS: Using somatic CRISPR/Cas9 gene editing, we generated liver-specific VPS35L or VPS26C-deficient mice. We determined total and surface levels of LDLR and LRP1 and plasma lipids. In addition, we studied the protein levels and composition of CCC and retriever. RESULTS: Hepatocyte VPS35L deficiency reduced VPS26C levels but had minimal impact on CCC composition. VPS35L deletion decreased hepatocytic surface expression of LDLR and LRP1, accompanied by a 21% increase in plasma cholesterol levels. Hepatic VPS26C ablation affected neither levels of VPS35L and CCC subunits, nor plasma lipid concentrations. However, VPS26C deficiency increased hepatic LDLR protein levels by 2-fold, probably compensating for reduced LRP1 functioning, as we showed in VPS26C-deficient hepatoma cells. Upon PCSK9 (proprotein convertase subtilisin/kexin type 9)-mediated LDLR elimination, VPS26C ablation delayed postprandial triglyceride clearance and increased plasma triglyceride levels by 26%. CONCLUSIONS: Our study suggests that VPS35L is shared between retriever and CCC to facilitate LDLR and LRP1 transport from endosomes to the cell surface. Conversely, retriever subunit VPS26C selectively transports LRP1, but not LDLR, and thereby may control hepatic uptake of postprandial triglyceride-rich lipoprotein remnants.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-1 , Proprotein Convertase 9 , Animals , Humans , Mice , Hepatocytes/metabolism , Lipoproteins/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Mice, Knockout , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Receptors, LDL , Triglycerides/metabolism
6.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35735979

ABSTRACT

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Lipoproteins/metabolism , Apolipoproteins/metabolism , Apolipoproteins/pharmacology , Triglycerides/metabolism , Liver/metabolism , Lipoproteins, VLDL/metabolism
7.
Hepatology ; 78(5): 1418-1432, 2023 11 01.
Article in English | MEDLINE | ID: mdl-36053190

ABSTRACT

BACKGROUND AND AIMS: The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 ( SMLR1 ), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine. APPROACH AND RESULTS: To assess the role of SMLR1 in the liver, we used somatic CRISPR/CRISPR-associated protein 9 gene editing to silence murine Smlr1 in hepatocytes ( Smlr1 -LKO). When fed a chow diet, male and female mice show hepatic steatosis, reduced plasma apolipoprotein B and triglycerides, and reduced VLDL secretion without affecting microsomal triglyceride transfer protein activity. Immunofluorescence studies show that SMLR1 is in the endoplasmic reticulum and Cis-Golgi complex. The loss of hepatic SMLR1 in female mice protects against diet-induced hyperlipidemia and atherosclerosis but causes NASH. On a high-fat, high-cholesterol diet, insulin and glucose tolerance tests did not reveal differences in male Smlr1 -LKO mice versus controls. CONCLUSIONS: We propose a role for SMLR1 in the trafficking of VLDL from the endoplasmic reticulum to the Cis-Golgi complex. While this study uncovers SMLR1 as a player in the VLDL assembly, trafficking, and secretion pathway, it also shows that NASH can occur with undisturbed glucose homeostasis and atheroprotection.


Subject(s)
Atherosclerosis , Lipoproteins, VLDL , Non-alcoholic Fatty Liver Disease , Small Leucine-Rich Proteoglycans , Animals , Female , Humans , Male , Mice , Apolipoproteins B/blood , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Leucine , Lipoproteins, VLDL/biosynthesis , Lipoproteins, VLDL/blood , Lipoproteins, VLDL/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Small Leucine-Rich Proteoglycans/genetics , Small Leucine-Rich Proteoglycans/metabolism , Triglycerides/blood
8.
Mol Genet Metab Rep ; 31: 100872, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35782606

ABSTRACT

Glycogen storage disease type 1a (GSD Ia) is an inborn error of carbohydrate metabolism. Despite severe hyperlipidemia, GSD Ia patients show limited atherogenesis compared to age-and-gender matched controls. Employing a GSD Ia mouse model that resembles the severe hyperlipidemia in patients, we here found increased atherogenesis in GSD Ia. These data provide a rationale for investigating atherogenesis in GSD Ia in a larger patient cohort.

9.
Nat Commun ; 13(1): 3799, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778407

ABSTRACT

Atherosclerosis is a chronic inflammatory disease driven by hypercholesterolemia. During aging, T cells accumulate cholesterol, potentially affecting inflammation. However, the effect of cholesterol efflux pathways mediated by ATP-binding cassette A1 and G1 (ABCA1/ABCG1) on T cell-dependent age-related inflammation and atherosclerosis remains poorly understood. In this study, we generate mice with T cell-specific Abca1/Abcg1-deficiency on the low-density-lipoprotein-receptor deficient (Ldlr-/-) background. T cell Abca1/Abcg1-deficiency decreases blood, lymph node, and splenic T cells, and increases T cell activation and apoptosis. T cell Abca1/Abcg1-deficiency induces a premature T cell aging phenotype in middle-aged (12-13 months) Ldlr-/- mice, reflected by upregulation of senescence markers. Despite T cell senescence and enhanced T cell activation, T cell Abca1/Abcg1-deficiency decreases atherosclerosis and aortic inflammation in middle-aged Ldlr-/- mice, accompanied by decreased T cells in atherosclerotic plaques. We attribute these effects to T cell apoptosis downstream of T cell activation, compromising T cell functionality. Collectively, we show that T cell cholesterol efflux pathways suppress T cell apoptosis and senescence, and induce atherosclerosis in middle-aged Ldlr-/- mice.


Subject(s)
Atherosclerosis , T-Lymphocytes , Animals , Apoptosis , Atherosclerosis/genetics , Biological Transport , Immunologic Deficiency Syndromes , Inflammation , Mice , Thymus Gland/abnormalities
10.
Mol Metab ; 60: 101472, 2022 06.
Article in English | MEDLINE | ID: mdl-35304331

ABSTRACT

OBJECTIVE: GALNT2, encoding polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2), was initially discovered as a regulator of high-density lipoprotein metabolism. GalNAc-T2 is known to exert these effects through post-translational modification, i.e., O-linked glycosylation of secreted proteins with established roles in plasma lipid metabolism. It has recently become clear that loss of GALNT2 in rodents, cattle, nonhuman primates, and humans should be regarded as a novel congenital disorder of glycosylation that affects development and body weight. The role of GALNT2 in metabolic abnormalities other than plasma lipids, including insulin sensitivity and energy homeostasis, is poorly understood. METHODS: GWAS data from the UK Biobank was used to study variation in the GALNT2 locus beyond changes in high-density lipoprotein metabolism. Experimental data were obtained through studies in Galnt2-/- mice and wild-type littermates on both control and high-fat diet. RESULTS: First, we uncovered associations between GALNT2 gene variation, adiposity, and body mass index in humans. In mice, we identify the insulin receptor as a novel substrate of GalNAc-T2 and demonstrate that Galnt2-/- mice exhibit decreased adiposity, alterations in insulin signaling and a shift in energy substrate utilization in the inactive phase. CONCLUSIONS: This study identifies a novel role for GALNT2 in energy homeostasis, and our findings suggest that the local effects of GalNAc-T2 are mediated through posttranslational modification of the insulin receptor.


Subject(s)
Lipoproteins, HDL , Receptor, Insulin , Animals , Cattle , Glycosylation , Homeostasis , Mice , N-Acetylgalactosaminyltransferases , Polypeptide N-acetylgalactosaminyltransferase
11.
J Lipid Res ; 63(2): 100167, 2022 02.
Article in English | MEDLINE | ID: mdl-35007562

ABSTRACT

Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.


Subject(s)
Hematopoietic Stem Cell Mobilization
12.
Mol Metab ; 54: 101349, 2021 12.
Article in English | MEDLINE | ID: mdl-34626855

ABSTRACT

OBJECTIVE: Obesity-related chronic inflammation plays an important role in the development of Metabolic Associated Fatty Liver Disease (MAFLD). Although the contribution of the pro-inflammatory NF-κB signaling pathway to the progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is well-established, its role as an initiator of hepatic steatosis and the underlying mechanism remains unclear. Here, we investigated the hypothesis that the hepatocytic NF-κB signaling pathway acts as a metabolic regulator, thereby promoting hepatic steatosis development. METHODS: A murine model expressing a constitutively active form of IKKß in hepatocytes (Hep-IKKßca) was used to activate hepatocyte NF-κB. In addition, IKKßca was also expressed in hepatocyte A20-deficient mice (IKKßca;A20LKO). A20 is an NF-κB-target gene that inhibits the activation of the NF-κB signaling pathway upstream of IKKß. These mouse models were fed a sucrose-rich diet for 8 weeks. Hepatic lipid levels were measured and using [1-13C]-acetate de novo lipogenesis and cholesterol synthesis rate were determined. Gene expression analyses and immunoblotting were used to study the lipogenesis and cholesterol synthesis pathways. RESULTS: Hepatocytic NF-κB activation by expressing IKKßca in hepatocytes resulted in hepatic steatosis without inflammation. Ablation of hepatocyte A20 in Hep-IKKßca mice (IKKßca;A20LKO mice) exacerbated hepatic steatosis, characterized by macrovesicular accumulation of triglycerides and cholesterol, and increased plasma cholesterol levels. Both De novo lipogenesis (DNL) and cholesterol synthesis were found elevated in IKKßca;A20LKO mice. Phosphorylation of AMP-activated kinase (AMPK) - a suppressor in lipogenesis and cholesterol synthesis - was decreased in IKKßca;A20LKO mice. This was paralleled by elevated protein levels of hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) and reduced phosphorylation of HMG-CoA reductase (HMGCR) both key enzymes in the cholesterol synthesis pathway. Whereas inflammation was not observed in young IKKßca;A20LKO mice sustained hepatic NF-κB activation resulted in liver inflammation, together with elevated hepatic and plasma cholesterol levels in middle-aged mice. CONCLUSIONS: The hepatocytic IKK:NF-κB axis is a metabolic regulator by controlling DNL and cholesterol synthesis, independent of its central role in inflammation. The IKK:NF-κB axis controls the phosphorylation levels of AMPK and HMGCR and the protein levels of HMGCS1. Chronic IKK-mediated NF-κB activation may contribute to the initiation of hepatic steatosis and cardiovascular disease risk in MAFLD patients.


Subject(s)
Cholesterol/biosynthesis , I-kappa B Kinase/metabolism , Lipogenesis , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Disease Models, Animal , Hepatocytes/metabolism , Mice , Mice, Congenic , Mice, Transgenic
13.
Hepatology ; 74(5): 2491-2507, 2021 11.
Article in English | MEDLINE | ID: mdl-34157136

ABSTRACT

BACKGROUND AND AIMS: Patients with glycogen storage disease type 1a (GSD-1a) primarily present with life-threatening hypoglycemia and display severe liver disease characterized by hepatomegaly. Despite strict dietary management, long-term complications still occur, such as liver tumor development. Variations in residual glucose-6-phosphatase (G6PC1) activity likely contribute to phenotypic heterogeneity in biochemical symptoms and complications between patients. However, lack of insight into the relationship between G6PC1 activity and symptoms/complications and poor understanding of the underlying disease mechanisms pose major challenges to provide optimal health care and quality of life for GSD-1a patients. Currently available GSD-1a animal models are not suitable to systematically investigate the relationship between hepatic G6PC activity and phenotypic heterogeneity or the contribution of gene-gene interactions (GGIs) in the liver. APPROACH AND RESULTS: To meet these needs, we generated and characterized a hepatocyte-specific GSD-1a mouse model using somatic CRISPR/CRISPR-associated protein 9 (Cas9)-mediated gene editing. Hepatic G6pc editing reduced hepatic G6PC activity up to 98% and resulted in failure to thrive, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly, hepatic steatosis (HS), and increased liver tumor incidence. This approach was furthermore successful in simultaneously modulating hepatic G6PC and carbohydrate response element-binding protein, a transcription factor that is activated in GSD-1a and protects against HS under these conditions. Importantly, it also allowed for the modeling of a spectrum of GSD-1a phenotypes in terms of hepatic G6PC activity, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly and HS. CONCLUSIONS: In conclusion, we show that somatic CRISPR/Cas9-mediated gene editing allows for the modeling of a spectrum of hepatocyte-borne GSD-1a disease symptoms in mice and to efficiently study GGIs in the liver. This approach opens perspectives for translational research and will likely contribute to personalized treatments for GSD-1a and other genetic liver diseases.


Subject(s)
CRISPR-Associated Protein 9/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Disease Models, Animal , Gene Editing/methods , Genetic Heterogeneity , Glycogen Storage Disease Type I/genetics , Phenotype , Animals , Genetic Vectors , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Hepatocytes/enzymology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
14.
Mol Metab ; 53: 101265, 2021 11.
Article in English | MEDLINE | ID: mdl-34091064

ABSTRACT

OBJECTIVE: Glycogen storage disease type 1a (GSD Ia) is a rare inherited metabolic disorder caused by mutations in the glucose-6-phosphatase (G6PC1) gene. When untreated, GSD Ia leads to severe fasting-induced hypoglycemia. Although current intensive dietary management aims to prevent hypoglycemia, patients still experience hypoglycemic events. Poor glycemic control in GSD Ia is associated with hypertriglyceridemia, hepatocellular adenoma and carcinoma, and also with an increased bleeding tendency of unknown origin. METHODS: To evaluate the effect of glycemic control on leukocyte levels and coagulation in GSD Ia, we employed hepatocyte-specific G6pc1 deficient (L-G6pc-/-) mice under fed or fasted conditions, to match good or poor glycemic control in GSD Ia, respectively. RESULTS: We found that fasting-induced hypoglycemia in L-G6pc-/- mice decreased blood leukocytes, specifically proinflammatory Ly6Chi monocytes, compared to controls. Refeeding reversed this decrease. The decrease in Ly6Chi monocytes was accompanied by an increase in plasma corticosterone levels and was prevented by the glucocorticoid receptor antagonist mifepristone. Further, fasting-induced hypoglycemia in L-G6pc-/- mice prolonged bleeding time in the tail vein bleeding assay, with reversal by refeeding. This could not be explained by changes in coagulation factors V, VII, or VIII, or von Willebrand factor. While the prothrombin and activated partial thromboplastin time as well as total platelet counts were not affected by fasting-induced hypoglycemia in L-G6pc-/- mice, ADP-induced platelet aggregation was disturbed. CONCLUSIONS: These studies reveal a relationship between fasting-induced hypoglycemia, decreased blood monocytes, and disturbed platelet aggregation in L-G6pc-/- mice. While disturbed platelet aggregation likely accounts for the bleeding phenotype in GSD Ia, elevated plasma corticosterone decreases the levels of proinflammatory monocytes. These studies highlight the necessity of maintaining good glycemic control in GSD Ia.


Subject(s)
Fasting , Glycogen Storage Disease Type I/metabolism , Hepatocytes/metabolism , Hypoglycemia/metabolism , Monocytes/metabolism , Animals , Disease Models, Animal , Female , Glycogen Storage Disease Type I/pathology , Hepatocytes/pathology , Hypoglycemia/pathology , Ice , Male , Mice, Knockout , Mice, Transgenic , Monocytes/pathology , Platelet Aggregation
15.
Cell Mol Gastroenterol Hepatol ; 11(4): 1045-1069, 2021.
Article in English | MEDLINE | ID: mdl-33309945

ABSTRACT

BACKGROUND AND AIMS: Bile acids (BAs) aid intestinal fat absorption and exert systemic actions by receptor-mediated signaling. BA receptors have been identified as drug targets for liver diseases. Yet, differences in BA metabolism between humans and mice hamper translation of pre-clinical outcomes. Cyp2c70-ablation in mice prevents synthesis of mouse/rat-specific muricholic acids (MCAs), but potential (patho)physiological consequences of their absence are unknown. We therefore assessed age- and gender-dependent effects of Cyp2c70-deficiency in mice. METHODS: The consequences of Cyp2c70-deficiency were assessed in male and female mice at different ages. RESULTS: Cyp2c70-/- mice were devoid of MCAs and showed high abundances of chenodeoxycholic and lithocholic acids. Cyp2c70-deficiency profoundly impacted microbiome composition. Bile flow and biliary BA secretion were normal in Cyp2c70-/- mice of both sexes. Yet, the pathophysiological consequences of Cyp2c70-deficiency differed considerably between sexes. Three-week old male Cyp2c70-/- mice showed high plasma BAs and transaminases, which spontaneously decreased thereafter to near-normal levels. Only mild ductular reactions were observed in male Cyp2c70-/- mice up to 8 months of age. In female Cyp2c70-/- mice, plasma BAs and transaminases remained substantially elevated with age, gut barrier function was impaired and bridging fibrosis was observed at advanced age. Addition of 0.1% ursodeoxycholic acid to the diet fully normalized hepatic and intestinal functions in female Cyp2c70-/- mice. CONCLUSION: Cyp2c70-/- mice show transient neonatal cholestasis and develop cholangiopathic features that progress to bridging fibrosis in females only. These consequences of Cyp2c70-deficiency are restored by treatment with UDCA, indicating a role of BA hydrophobicity in disease development.


Subject(s)
Bile Acids and Salts/metabolism , Biliary Tract Diseases/prevention & control , Cholangitis/prevention & control , Cholic Acids/metabolism , Cytochrome P-450 Enzyme System/physiology , Fibrosis/prevention & control , Ursodeoxycholic Acid/pharmacology , Animals , Biliary Tract Diseases/etiology , Biliary Tract Diseases/metabolism , Biliary Tract Diseases/pathology , Cholangitis/etiology , Cholangitis/metabolism , Cholangitis/pathology , Female , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
Circ Res ; 124(1): 94-100, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30582442

ABSTRACT

RATIONALE: Several studies have suggested a role for the gut microbiota in inflammation and atherogenesis. A causal relation relationship between gut microbiota, inflammation, and atherosclerosis has not been explored previously. OBJECTIVE: Here, we investigated whether a proinflammatory microbiota from Caspase1-/- ( Casp1-/-) mice accelerates atherogenesis in Ldlr-/- mice. METHOD AND RESULTS: We treated female Ldlr-/- mice with antibiotics and subsequently transplanted them with fecal microbiota from Casp1-/- mice based on a cohousing approach. Autologous transplantation of fecal microbiota of Ldlr-/- mice served as control. Mice were cohoused for 8 or 13 weeks and fed chow or high-fat cholesterol-rich diet. Fecal samples were collected, and factors related to inflammation, metabolism, intestinal health, and atherosclerotic phenotypes were measured. Unweighted Unifrac distances of 16S rDNA (ribosomal DNA) sequences confirmed the introduction of the Casp1-/- and Ldlr-/- microbiota into Ldlr-/- mice (referred to as Ldlr-/-( Casp1-/-) or Ldlr-/-( Ldlr-/-) mice). Analysis of atherosclerotic lesion size in the aortic root demonstrated a significant 29% increase in plaque size in 13-week high-fat cholesterol-fed Ldlr-/-( Casp1-/-) mice compared with Ldlr-/-( Ldlr-/-) mice. We found increased numbers of circulating monocytes and neutrophils and elevated proinflammatory cytokine levels in plasma in high-fat cholesterol-fed Ldlr-/-( Casp1-/-) compared with Ldlr-/-( Ldlr-/-) mice. Neutrophil accumulation in the aortic root of Ldlr-/-( Casp1-/-) mice was enhanced compared with Ldlr-/-( Ldlr-/-) mice. 16S-rDNA-encoding sequence analysis in feces identified a significant reduction in the short-chain fatty acid-producing taxonomies Akkermansia, Christensenellaceae, Clostridium, and Odoribacter in Ldlr-/-( Casp1-/-) mice. Consistent with these findings, cumulative concentrations of the anti-inflammatory short-chain fatty acids propionate, acetate and butyrate in the cecum were significantly reduced in 13-week high-fat cholesterol-fed Ldlr-/-( Casp1-/-) compared with Ldlr-/-( Ldlr-/-) mice. CONCLUSIONS: Introduction of the proinflammatory Casp1-/- microbiota into Ldlr-/- mice enhances systemic inflammation and accelerates atherogenesis.


Subject(s)
Aorta/metabolism , Aortic Diseases/microbiology , Atherosclerosis/microbiology , Bacteria/metabolism , Cytokines/metabolism , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Inflammation Mediators/metabolism , Inflammation/microbiology , Animals , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Caspase 1/genetics , Caspase 1/metabolism , Disease Models, Animal , Disease Progression , Dysbiosis , Fatty Acids/metabolism , Female , Host-Pathogen Interactions , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice, Knockout , Plaque, Atherosclerotic , Receptors, LDL/genetics , Receptors, LDL/metabolism , Time Factors
17.
Mol Cell ; 62(2): 272-283, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27151442

ABSTRACT

Expanded CAG repeats lead to debilitating neurodegenerative disorders characterized by aggregation of proteins with expanded polyglutamine (polyQ) tracts. The mechanism of aggregation involves primary and secondary nucleation steps. We show how a noncanonical member of the DNAJ-chaperone family, DNAJB6, inhibits the conversion of soluble polyQ peptides into amyloid fibrils, in particular by suppressing primary nucleation. This inhibition is mediated by a serine/threonine-rich region that provides an array of surface-exposed hydroxyl groups that bind to polyQ peptides and may disrupt the formation of the H bonds essential for the stability of amyloid fibrils. Early prevention of polyQ aggregation by DNAJB6 occurs also in cells and leads to delayed neurite retraction even before aggregates are visible. In a mouse model, brain-specific coexpression of DNAJB6 delays polyQ aggregation, relieves symptoms, and prolongs lifespan, pointing to DNAJB6 as a potential target for disease therapy and tool for unraveling early events in the onset of polyQ diseases.

18.
Aging (Albany NY) ; 7(4): 256-68, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25979814

ABSTRACT

Metabolic inflammation in adipose tissue and the liver is frequently observed as a result of diet-induced obesity in human and rodent studies. Although the adipose tissue and the liver are both prone to become chronically inflamed with prolonged obesity, their individual contribution to the development of metabolic inflammation remains speculative. Thus, we aimed to elucidate the sequence of inflammatory events in adipose and hepatic tissues to determine their contribution to the development of metabolic inflammation and insulin resistance (IR) in diet-induced obesity. To confirm our hypothesis that adipose tissue (AT) inflammation is initiated prior to hepatic inflammation, C57BL/6J male mice were fed a low-fat diet (LFD; 10% kcal fat) or high-fat diet (HFD; 45% kcal fat) for either 24, 40 or 52 weeks. Lipid accumulation and inflammation was measured in AT and liver. Glucose tolerance was assessed and plasma levels of glucose, insulin, leptin and adiponectin were measured at various time points throughout the study. With HFD, C57BL/6j mice developed a progressive obese phenotype, accompanied by IR at 24 and 40 weeks of HFD, but IR was attenuated after 52 weeks of HFD. AT inflammation was present after 24 weeks of HFD, as indicated by the increased presence of crown-like structures and up-regulation of pro-inflammatory genes Tnf, Il1ß, Mcp1 and F4/80. As hepatic inflammation was not detected until 40 weeks of HFD, we show that AT inflammation is established prior to the development of hepatic inflammation. Thus, AT inflammation is likely to have a greater contribution to the development of IR compared to hepatic inflammation.


Subject(s)
Adipose Tissue/pathology , Diet, High-Fat , Insulin Resistance/physiology , Liver/pathology , Obesity/pathology , Adipose Tissue/metabolism , Animals , Inflammation/metabolism , Inflammation/pathology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Up-Regulation
19.
J Diabetes Res ; 2015: 956854, 2015.
Article in English | MEDLINE | ID: mdl-25815343

ABSTRACT

Chronic inflammation is considered a causal risk factor predisposing to insulin resistance. However, evidence is accumulating that inflammation confined to the liver may not be causal to metabolic dysfunction. To investigate this, we assessed if hepatic inflammation explains the predisposition towards insulin resistance in low-density lipoprotein receptor knock-out (Ldlr (-/-)) mice. For this, wild type (WT) and Ldlr (-/-) mice were fed a chow diet, a high fat (HF) diet, or a high fat, high cholesterol (HFC) diet for 2 weeks. Plasma lipid levels were elevated in chow-fed Ldlr (-/-) mice compared to WT mice. Although short-term HF or HFC feeding did not result in body weight gain and adipose tissue inflammation, dyslipidemia was worsened in Ldlr (-/-) mice compared to WT mice. In addition, dyslipidemic HF-fed Ldlr (-/-) mice had a higher hepatic glucose production rate than HF-fed WT mice, while peripheral insulin resistance was unaffected. This suggests that HF-fed Ldlr (-/-) mice suffered from hepatic insulin resistance. While HFC-fed Ldlr (-/-) mice displayed the anticipated increased hepatic inflammation, this did neither exacerbate systemic nor hepatic insulin resistance. Therefore, our results show that hepatic insulin resistance is unrelated to cholesterol-induced hepatic inflammation in Ldlr (-/-) mice, indicating that hepatic inflammation may not contribute to metabolic dysfunction per se.


Subject(s)
Cholesterol/adverse effects , Inflammation/metabolism , Insulin Resistance/genetics , Liver/metabolism , Receptors, LDL/genetics , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Cholesterol/blood , Dyslipidemias/genetics , Dyslipidemias/metabolism , Female , Gas Chromatography-Mass Spectrometry , Glucose Clamp Technique , Glucose Tolerance Test , Lipids/chemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/metabolism , Risk Factors , Triglycerides/metabolism
20.
Biochim Biophys Acta ; 1842(11): 2257-65, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25072958

ABSTRACT

The transcription factor NF-κB plays a critical role in the inflammatory response and it has been implicated in various diseases, including non-alcoholic fatty liver disease (NAFLD). Although transient NF-κB activation may protect tissues from stress, a prolonged NF-κB activation can have a detrimental effect on tissue homeostasis and therefore accurate termination is crucial. Copper Metabolism MURR1 Domain-containing 1 (COMMD1), a protein with functions in multiple pathways, has been shown to suppress NF-κB activity. However, its action in controlling liver inflammation has not yet been investigated. To determine the cell-type-specific contribution of Commd1 to liver inflammation, we used hepatocyte and myeloid-specific Commd1-deficient mice. We also used a mouse model of NAFLD to study low-grade chronic liver inflammation: we fed the mice a high fat, high cholesterol (HFC) diet, which results in hepatic lipid accumulation accompanied by liver inflammation. Depletion of hepatocyte Commd1 resulted in elevated levels of the NF-κB transactivation subunit p65 (RelA) but, surprisingly, the level of liver inflammation was not aggravated. In contrast, deficiency of myeloid Commd1 exacerbated diet-induced liver inflammation. Unexpectedly we observed that hepatic and myeloid Commd1 deficiency in the mice both augmented hepatic lipid accumulation. The elevated levels of proinflammatory cytokines in myeloid Commd1-deficient mice might be responsible for the increased level of steatosis. This increase was not seen in hepatocyte Commd1-deficient mice, in which increased lipid accumulation appeared to be independent of inflammation. Our mouse models demonstrate a cell-type-specific role for Commd1 in suppressing liver inflammation and in the progression of NAFLD.

SELECTION OF CITATIONS
SEARCH DETAIL
...