Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(28): 33677-33684, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34227384

ABSTRACT

van der Waals heterostructures are currently the focus of intense investigation; this is essentially due to the unprecedented flexibility offered by the total relaxation of lattice matching requirements and their new and exotic properties compared to the individual layers. Here, we investigate the hybrid transition-metal dichalcogenide/2D perovskite heterostructure WS2/(PEA)2PbI4 (where PEA stands for phenylethylammonium). We present the first density functional theory (DFT) calculations of a heterostructure ensemble, which reveal a novel band alignment, where direct electron transfer is blocked by the organic spacer of the 2D perovskite. In contrast, the valence band forms a cascade from WS2 through the PEA to the PbI4 layer allowing hole transfer. These predictions are supported by optical spectroscopy studies, which provide compelling evidence for both charge transfer and nonradiative transfer of the excitation (energy transfer) between the layers. Our results show that TMD/2D perovskite (where TMD stands for transition-metal dichalcogenides) heterostructures provide a flexible and convenient way to engineer the band alignment.

2.
Nanoscale ; 12(39): 20300-20307, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33001125

ABSTRACT

Lanthanide-doped nanoparticles enable conversion of near-infrared photons to visible ones. This property is envisioned as a basis of a broad range of applications: from optoelectronics, via energy conversion, to bio-sensing and phototherapy. The spectrum of applications can be extended if magnetooptical properties of lanthanide dopants are well understood. However, at present, there are many conflicting reports on the influence of the magnetic field on the upconverted luminescence. In this work, we resolve this discrepancy by performing a comprehensive study of ß-NaYF4:Er3+,Yb3+ nanoparticles. Crucially, we show that the magnetic field impacts the luminescence only via a Zeeman-driven detuning between the excitation laser and the absorption transition. On the other hand, the energy transfer and multiphonon relaxation rates are unaffected. We propose a phenomenological model, which qualitatively reproduces the experimental results. The presented results are expected to lead to design of novel, dual-mode opto-magnetic upconverting nanomaterials.

3.
Nanotechnology ; 31(46): 465101, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-32717731

ABSTRACT

In photodynamic therapy (PDT), photosensitizer (PS) molecules are irradiated by light to generate reactive oxygen species (ROS), the presence of which subsequently leads to cell death. At present, the modality is limited to the treatment of skin diseases because of the low tissue penetration of visible or ultraviolet light required for producing ROS. To increase tissue penetration and extend the therapeutic possibilities of PDT to the treatment of deep-seated cancer, rare-earth doped nanoparticles capable of up-converting infrared to visible light are investigated. These up-converting nanoparticles (UCNPs) are conjugated with PS molecules to efficiently generate ROS. In this work, we employ hexagonal ß-NaYF4:Yb3 + ,Er3 + as UCNPs and Rose Bengal (RB) as PS molecules and demonstrate efficient in vitro PDT using this nanoformulation. Covalent bonding of the RB molecules is accomplished without their functionalization-an approach which is expected to increase the efficiency of ROS generation by 30%. Spectroscopic studies reveal that our approach results in UCNP surface fully covered with RB molecules. The energy transfer from UCNPs to RB is predominantly non-radiative as evidenced by luminescence lifetime measurements. As a result, ROS are generated as efficiently as under visible light illumination. The in vitro PDT is tested on murine breast 4T1 cancer cells incubated with 250 µg ml-1 of the nanoparticles and irradiated with NIR light under power density of 2 W cm-2 for 10 minutes. After 24 hours, the cell viability decreased to 33% demonstrating a very good treatment efficiency. These results are expected to simplify the protocols for preparation of the PDT agents and lead to improved therapeutic effects.


Subject(s)
Erbium/pharmacology , Fluorides/pharmacology , Photosensitizing Agents/pharmacology , Rose Bengal/pharmacology , Ytterbium/pharmacology , Yttrium/pharmacology , Animals , Cell Line, Tumor , Erbium/chemistry , Female , Fluorides/chemistry , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Experimental/drug therapy , Mice , Nanoparticles/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry , Rose Bengal/chemistry , Ytterbium/chemistry , Yttrium/chemistry
4.
Nano Lett ; 19(10): 7054-7061, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31496255

ABSTRACT

Exciton fine structure splitting in semiconductors reflects the underlying symmetry of the crystal and quantum confinement. Because the latter factor strongly enhances the exchange interaction, most work has focused on nanostructures. Here, we report on the first observation of the bright exciton fine structure splitting in a bulk semiconductor crystal, where the impact of quantum confinement can be specifically excluded, giving access to the intrinsic properties of the material. Detailed investigation of the exciton photoluminescence and reflection spectra of a bulk methylammonium lead tribromide single crystal reveals a zero magnetic field splitting as large as ∼200 µeV. This result provides an important starting point for the discussion of the origin of the large bright exciton fine structure splitting observed in perovskite nanocrystals.

5.
Nano Lett ; 18(6): 3994-4000, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29791166

ABSTRACT

Degenerate extrema in the energy dispersion of charge carriers in solids, also referred to as valleys, can be regarded as a binary quantum degree of freedom, which can potentially be used to implement valleytronic concepts in van der Waals heterostructures based on transition metal dichalcogenides. Using magneto-photoluminescence spectroscopy, we achieve a deeper insight into the valley polarization and depolarization mechanisms of interlayer excitons formed across a MoS2/MoSe2/MoS2 heterostructure. We account for the nontrivial behavior of the valley polarization as a function of the magnetic field by considering the interplay between exchange interaction and phonon-mediated intervalley scattering in a system consisting of Zeeman-split energy levels. Our results represent a crucial step toward the understanding of the properties of interlayer excitons with strong implications for the implementation of atomically thin valleytronic devices.

6.
Phys Chem Chem Phys ; 17(37): 24029-37, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26313635

ABSTRACT

This study describes a new method of passivating ZnO nanofiber-based devices with a ZnS layer. This one-step process was carried out in H2S gas at room temperature, and resulted in the formation of core/shell ZnO/ZnS nanofibers. This study presents the structural, optical and electrical properties of ZnO/ZnS nanofibers formed by a 2 nm ZnS sphalerite crystal shell covering a 5 nm ZnO wurtzite crystal core. The passivation process prevented free carriers from capture by oxygen molecules and significantly reduced the impact of O2 on nanostructure conductivity. The conductivity of the nanofibers was increased by three orders of magnitude after the sulfidation, the photoresponse time was reduced from 1500 s to 30 s, and the cathodoluminescence intensity increased with the sulfidation time thanks to the removal of ZnO surface defects by passivation. The ZnO/ZnS nanofibers were stable in water for over 30 days, and in phosphate buffers of acidic, neutral and alkaline pH for over 3 days. The by-products of the passivation process did not affect the conductivity of the devices. The potential of ZnO/ZnS nanofibers for protein biosensing is demonstrated using biotin and streptavidin as a model system. The presented ZnS shell preparation method can facilitate the construction of future sensors and protects the ZnO surface from dissolving in a biological environment.


Subject(s)
Biosensing Techniques/methods , Gases/chemistry , Nanofibers/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Zinc Oxide/chemistry , Biotin/analysis , Electricity , Streptavidin/analysis , Surface Properties
7.
Nano Lett ; 15(3): 1972-8, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25710186

ABSTRACT

We study the impact of the nanowire shape anisotropy on the spin splitting of excitonic photoluminescence. The experiments are performed on individual ZnMnTe/ZnMgTe core/shell nanowires as well as on ZnTe/ZnMgTe core/shell nanowires containing optically active magnetic CdMnTe insertions. When the magnetic field is oriented parallel to the nanowire axis, the spin splitting is several times larger than for the perpendicular field. We interpret this pronounced anisotropy as an effect of mixing of valence band states arising from the strain present in the core/shell geometry. This interpretation is further supported by theoretical calculations which allow to reproduce experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...