Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 12: 562211, 2021.
Article in English | MEDLINE | ID: mdl-35222131

ABSTRACT

RESEARCH FOCUS: The promotion of domain-specific knowledge is a central goal of higher education and, in the field of medicine, it is particularly essential to promote global health. Domain-specific knowledge on its own is not exhaustive; confidence regarding the factual truth of this knowledge content is also required. An increase in both knowledge and confidence is considered a necessary prerequisite for making professional decisions in the clinical context. Especially the knowledge of human physiology is fundamental and simultaneously critical to medical decision-making. However, numerous studies have shown difficulties in understanding and misconceptions in this area of knowledge. Therefore, we investigate (i) how preclinical medical students acquire knowledge in physiology over the course of their studies and simultaneously gain confidence in the correctness of this knowledge as well as (ii) the interrelations between these variables, and (iii) how they affect the development of domain-specific knowledge. METHOD: In a pre-post study, 169 medical students' development of physiology knowledge and their confidence related to this knowledge were assessed via paper-pencil questionnaires before and after attending physiology seminars for one semester. Data from a longitudinal sample of n = 97 students were analyzed using mean comparisons, regression analyses, and latent class analyses (LCAs). In addition, four types of item responses were formed based on confidence and correctness in the knowledge test. RESULTS: We found a significant and large increase in the students' physiology knowledge, with task-related confidence being the strongest predictor (apart from learning motivation). Moreover, a significantly higher level of confidence at t2 was confirmed, with the level of prior confidence being a strong predictor (apart from knowledge at t2). Furthermore, based on the students' development of knowledge and confidence levels between measurement points, three empirically distinct groups were distinguished: knowledge gainers, confidence gainers, and overall gainers. The students whose confidence in incorrect knowledge increased constituted one particularly striking group. Therefore, the training of both knowledge and the ability to critically reflect on one's knowledge and skills as well as an assessment of their development in education is required, especially in professions such as medicine, where knowledge-based decisions made with confidence are of vital importance.

2.
Front Psychol ; 11: 576273, 2020.
Article in English | MEDLINE | ID: mdl-33424686

ABSTRACT

To successfully learn using open Internet resources, students must be able to critically search, evaluate and select online information, and verify sources. Defined as critical online reasoning (COR), this construct is operationalized on two levels in our study: (1) the student level using the newly developed Critical Online Reasoning Assessment (CORA), and (2) the online information processing level using event log data, including gaze durations and fixations. The written responses of 32 students for one CORA task were scored by three independent raters. The resulting score was operationalized as "task performance," whereas the gaze fixations and durations were defined as indicators of "process performance." Following a person-oriented approach, we conducted a process mining (PM) analysis, as well as a latent class analysis (LCA) to test whether-following the dual-process theory-the undergraduates could be distinguished into two groups based on both their process and task performance. Using PM, the process performance of all 32 students was visualized and compared, indicating two distinct response process patterns. One group of students (11), defined as "strategic information processers," processed online information more comprehensively, as well as more efficiently, which was also reflected in their higher task scores. In contrast, the distributions of the process performance variables for the other group (21), defined as "avoidance information processers," indicated a poorer process performance, which was also reflected in their lower task scores. In the LCA, where two student groups were empirically distinguished by combining the process performance indicators and the task score as a joint discriminant criterion, we confirmed these two COR profiles, which were reflected in high vs. low process and task performances. The estimated parameters indicated that high-performing students were significantly more efficient at conducting strategic information processing, as reflected in their higher process performance. These findings are so far based on quantitative analyses using event log data. To enable a more differentiated analysis of students' visual attention dynamics, more in-depth qualitative research of the identified student profiles in terms of COR will be required.

3.
Eur J Neurosci ; 40(6): 2898-909, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25059097

ABSTRACT

The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'.


Subject(s)
Action Potentials/drug effects , Dopaminergic Neurons/drug effects , Proteasome Inhibitors/pharmacology , Substantia Nigra/drug effects , Action Potentials/physiology , Animals , Cell Count , Cell Death/drug effects , Dopaminergic Neurons/physiology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Functional Laterality , Immunohistochemistry , Male , Mice, Inbred C57BL , Microelectrodes , Motor Activity/drug effects , Motor Activity/physiology , Oligopeptides/pharmacology , Parkinsonian Disorders , Substantia Nigra/physiopathology , Tyrosine 3-Monooxygenase/metabolism , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/physiology
4.
Nat Neurosci ; 15(9): 1272-80, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22902720

ABSTRACT

Phasic activation of the dopamine (DA) midbrain system in response to unexpected reward or novelty is critical for adaptive behavioral strategies. This activation of DA midbrain neurons occurs via a synaptically triggered switch from low-frequency background spiking to transient high-frequency burst firing. We found that, in medial DA neurons of the substantia nigra (SN), activity of ATP-sensitive potassium (K-ATP) channels enabled NMDA-mediated bursting in vitro as well as spontaneous in vivo burst firing in anesthetized mice. Cell-selective silencing of K-ATP channel activity in medial SN DA neurons revealed that their K-ATP channel-gated burst firing was crucial for novelty-dependent exploratory behavior. We also detected a transcriptional upregulation of K-ATP channel and NMDA receptor subunits, as well as high in vivo burst firing, in surviving SN DA neurons from Parkinson's disease patients, suggesting that burst-gating K-ATP channel function in DA neurons affects phenotypes in both disease and health.


Subject(s)
Dopaminergic Neurons/physiology , Exploratory Behavior/physiology , KATP Channels/physiology , Substantia Nigra/physiology , Animals , Dependovirus/genetics , Electrophysiological Phenomena , Environment , Gene Silencing/physiology , Humans , Immunohistochemistry , KATP Channels/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Motor Activity/physiology , Parkinson Disease/physiopathology , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, N-Methyl-D-Aspartate/biosynthesis , Receptors, N-Methyl-D-Aspartate/genetics , Substantia Nigra/cytology , Ventral Tegmental Area/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...