Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 13(10): e14123, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34409732

ABSTRACT

In colorectal cancer, oncogenic mutations transform a hierarchically organized and homeostatic epithelium into invasive cancer tissue lacking visible organization. We sought to define transcriptional states of colorectal cancer cells and signals controlling their development by performing single-cell transcriptome analysis of tumors and matched non-cancerous tissues of twelve colorectal cancer patients. We defined patient-overarching colorectal cancer cell clusters characterized by differential activities of oncogenic signaling pathways such as mitogen-activated protein kinase and oncogenic traits such as replication stress. RNA metabolic labeling and assessment of RNA velocity in patient-derived organoids revealed developmental trajectories of colorectal cancer cells organized along a mitogen-activated protein kinase activity gradient. This was in contrast to normal colon organoid cells developing along graded Wnt activity. Experimental targeting of EGFR-BRAF-MEK in cancer organoids affected signaling and gene expression contingent on predictive KRAS/BRAF mutations and induced cell plasticity overriding default developmental trajectories. Our results highlight directional cancer cell development as a driver of non-genetic cancer cell heterogeneity and re-routing of trajectories as a response to targeted therapy.


Subject(s)
Colorectal Neoplasms , Colorectal Neoplasms/genetics , Humans , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases , Mutation , Oncogenes
2.
Adv Biol Regul ; 79: 100778, 2021 01.
Article in English | MEDLINE | ID: mdl-33431353

ABSTRACT

In colorectal cancer (CRC), the prevalence of NRAS mutations (5-9%) is inferior to that of KRAS mutations (40-50%). NRAS mutations feature lately during tumour progression and drive resistance to anti-EGFR therapy in KRAS wild-type tumours. To elucidate specific functions of NRAS mutations in CRC, we expressed doxycycline-inducible G12D and Q61K mutations in the CRC cell line Caco-2. A focused phospho-proteome analysis based on the Bio-Plex platform, which interrogated the activity of MAPK, PI3K, mTOR, STAT, p38, JNK and ATF2, did not reveal significant differences between Caco-2 cells expressing NRASG12D, NRASQ61K and KRASG12V. However, phenotypic read-outs were different. The NRAS Q61K mutation promoted anchorage-independent proliferation and tumorigenicity, similar to features driven by canonical KRAS mutations. In contrast, expression of NRASG12D resulted in reduced proliferation and apoptosis. At the transcriptome level, we saw upregulation of cytokines and chemokines. IL1A, IL11, CXCL8 (IL-8) and CCL20 exhibited enhanced secretion into the culture medium. In addition, RNA sequencing results indicated activation of the IL1-, JAK/STAT-, NFκB- and TNFα signalling pathways. These results form the basis for an NRASG12D-driven inflammatory phenotype in CRC.


Subject(s)
Colorectal Neoplasms/genetics , GTP Phosphohydrolases/genetics , Membrane Proteins/genetics , Apoptosis , Caco-2 Cells , Cell Proliferation , Chemokines/genetics , Chemokines/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/physiopathology , Cytokines/genetics , Cytokines/metabolism , GTP Phosphohydrolases/metabolism , Humans , Membrane Proteins/metabolism , Mutation , Oncogenes , Signal Transduction
3.
Cell Rep ; 32(12): 108184, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32966782

ABSTRACT

Oncoproteins such as the BRAFV600E kinase endow cancer cells with malignant properties, but they also create unique vulnerabilities. Targeting of BRAFV600E-driven cytoplasmic signaling networks has proved ineffective, as patients regularly relapse with reactivation of the targeted pathways. We identify the nuclear protein SFPQ to be synthetically lethal with BRAFV600E in a loss-of-function shRNA screen. SFPQ depletion decreases proliferation and specifically induces S-phase arrest and apoptosis in BRAFV600E-driven colorectal and melanoma cells. Mechanistically, SFPQ loss in BRAF-mutant cancer cells triggers the Chk1-dependent replication checkpoint, results in decreased numbers and reduced activities of replication factories, and increases collision between replication and transcription. We find that BRAFV600E-mutant cancer cells and organoids are sensitive to combinations of Chk1 inhibitors and chemically induced replication stress, pointing toward future therapeutic approaches exploiting nuclear vulnerabilities induced by BRAFV600E.


Subject(s)
Colorectal Neoplasms/genetics , Mutation/genetics , PTB-Associated Splicing Factor/metabolism , Proto-Oncogene Proteins B-raf/genetics , Synthetic Lethal Mutations/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , Colorectal Neoplasms/pathology , DNA Damage , DNA Repair/drug effects , DNA Repair/genetics , DNA Replication/drug effects , DNA Replication/genetics , Female , Humans , Hydroxyurea/pharmacology , Mice, Nude , Rad51 Recombinase/metabolism , Reproducibility of Results , S Phase/drug effects , S Phase/genetics , Stress, Physiological/drug effects , Tumor Suppressor p53-Binding Protein 1/metabolism
4.
Cell Death Dis ; 11(7): 499, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32612138

ABSTRACT

To unravel vulnerabilities of KRAS-mutant CRC cells, a shRNA-based screen specifically inhibiting MAPK pathway components and targets was performed in CaCo2 cells harboring conditional oncogenic KRASG12V. The custom-designed shRNA library comprised 121 selected genes, which were previously identified to be strongly regulated in response to MEK inhibition. The screen showed that CaCo2 cells expressing KRASG12V were sensitive to the suppression of the DNA replication licensing factor minichromosome maintenance complex component 7 (MCM7), whereas KRASwt CaCo2 cells were largely resistant to MCM7 suppression. Similar results were obtained in an isogenic DLD-1 cell culture model. Knockdown of MCM7 in a KRAS-mutant background led to replication stress as indicated by increased nuclear RPA focalization. Further investigation showed a significant increase in mitotic cells after simultaneous MCM7 knockdown and KRASG12V expression. The increased percentage of mitotic cells coincided with strongly increased DNA damage in mitosis. Taken together, the accumulation of DNA damage in mitotic cells is due to replication stress that remained unresolved, which results in mitotic catastrophe and cell death. In summary, the data show a vulnerability of KRAS-mutant cells towards suppression of MCM7 and suggest that inhibiting DNA replication licensing might be a viable strategy to target KRAS-mutant cancers.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mitosis , Mutation/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Replication Origin , Caco-2 Cells , Cell Death , Cell Proliferation , Cellular Senescence , DNA Damage , DNA Replication , Gene Knockdown Techniques , Humans , Minichromosome Maintenance Complex Component 7/metabolism
5.
Cell Rep ; 31(11): 107764, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32553168

ABSTRACT

We address whether combinations with a pan-RAF inhibitor (RAFi) would be effective in KRAS mutant pancreatic ductal adenocarcinoma (PDAC). Chemical library and CRISPR genetic screens identify combinations causing apoptotic anti-tumor activity. The most potent combination, concurrent inhibition of RAF (RAFi) and ERK (ERKi), is highly synergistic at low doses in cell line, organoid, and rat models of PDAC, whereas each inhibitor alone is only cytostatic. Comprehensive mechanistic signaling studies using reverse phase protein array (RPPA) pathway mapping and RNA sequencing (RNA-seq) show that RAFi/ERKi induced insensitivity to loss of negative feedback and system failures including loss of ERK signaling, FOSL1, and MYC; shutdown of the MYC transcriptome; and induction of mesenchymal-to-epithelial transition. We conclude that low-dose vertical inhibition of the RAF-MEK-ERK cascade is an effective therapeutic strategy for KRAS mutant PDAC.


Subject(s)
Apoptosis/genetics , Carcinoma, Pancreatic Ductal/genetics , MAP Kinase Signaling System/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Apoptosis/drug effects , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Humans , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Pancreatic Neoplasms
6.
Cancer Res ; 74(7): 2006-14, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24509904

ABSTRACT

Cyclin E1 regulates the initiation of S-phase in cellular division. However, in many cancers, cyclin E1 is aberrantly overexpressed and this molecular phenotype correlates with increased tumor aggressiveness and poor patient survival. The molecular cause(s) of cyclin E1 abnormalities in cancers is poorly understood. Here, we show that cyclin E1 overexpression in cancer is promoted by dysregulation of the protein phosphatase PP2A-B55ß. PP2A-B55ß targets the N- and C-terminal phosphodegrons of cyclin E1 for dephosphorylation, thus protecting it from degradation mediated by the SCF(Fbxw7) ubiquitin ligase. Augmented B55ß expression stabilizes cyclin E1 and promotes its overexpression in cancer-derived cell lines and breast tumors. Conversely, B55ß ablation enforces the degradation of cyclin E1 and inhibits cancer cell proliferation in vitro and tumor formation in vivo. Therefore, PP2A-B55ß promotes cyclin E1 overexpression by antagonizing its degradation and its inhibition could represent a therapeutic mechanism for abrogating cyclin E1 function in cancers.


Subject(s)
Cyclin E/metabolism , Neoplasms/metabolism , Oncogene Proteins/metabolism , Protein Phosphatase 2/physiology , Animals , Cell Line, Tumor , Cell Proliferation , Cyclin E/antagonists & inhibitors , Female , HEK293 Cells , Humans , Mice , Oncogene Proteins/antagonists & inhibitors , Phosphorylation , Ubiquitination
7.
J Cell Sci ; 125(Pt 10): 2436-45, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22366459

ABSTRACT

To prevent re-replication of DNA in a single cell cycle, the licensing of replication origins by Mcm2-7 is prevented during S and G2 phases. Animal cells achieve this by cell-cycle-regulated proteolysis of the essential licensing factor Cdt1 and inhibition of Cdt1 by geminin. Here we investigate the consequences of ablating geminin in synchronised human U2OS cells. Following geminin loss, cells complete an apparently normal S phase, but a proportion arrest at the G2-M boundary. When Cdt1 accumulates in these cells, DNA re-replicates, suggesting that the key role of geminin is to prevent re-licensing in G2. If cell cycle checkpoints are inhibited in cells lacking geminin, cells progress through mitosis and less re-replication occurs. Checkpoint kinases thereby amplify re-replication into an all-or-nothing response by delaying geminin-depleted cells in G2. Deep DNA sequencing revealed no preferential re-replication of specific genomic regions after geminin depletion. This is consistent with the observation that cells in G2 have lost their replication timing information. By contrast, when Cdt1 is overexpressed or is stabilised by the neddylation inhibitor MLN4924, re-replication can occur throughout S phase.


Subject(s)
Cell Cycle Checkpoints , Cell Cycle Proteins/metabolism , Cells/cytology , DNA Replication , G2 Phase , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cells/metabolism , Geminin , Humans , Minichromosome Maintenance Complex Component 2 , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , S Phase
8.
Mol Cell ; 41(5): 495-6, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21362544
SELECTION OF CITATIONS
SEARCH DETAIL
...