Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4018, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740820

ABSTRACT

Anti-HSV therapies are only suppressive because they do not eliminate latent HSV present in ganglionic neurons, the source of recurrent disease. We have developed a potentially curative approach against HSV infection, based on gene editing using HSV-specific meganucleases delivered by adeno-associated virus (AAV) vectors. Gene editing performed with two anti-HSV-1 meganucleases delivered by a combination of AAV9, AAV-Dj/8, and AAV-Rh10 can eliminate 90% or more of latent HSV DNA in mouse models of orofacial infection, and up to 97% of latent HSV DNA in mouse models of genital infection. Using a pharmacological approach to reactivate latent HSV-1, we demonstrate that ganglionic viral load reduction leads to a significant decrease of viral shedding in treated female mice. While therapy is well tolerated, in some instances, we observe hepatotoxicity at high doses and subtle histological evidence of neuronal injury without observable neurological signs or deficits. Simplification of the regimen through use of a single serotype (AAV9) delivering single meganuclease targeting a duplicated region of the HSV genome, dose reduction, and use of a neuron-specific promoter each results in improved tolerability while retaining efficacy. These results reinforce the curative potential of gene editing for HSV disease.


Subject(s)
Dependovirus , Gene Editing , Herpes Simplex , Herpesvirus 1, Human , Viral Load , Virus Shedding , Animals , Gene Editing/methods , Female , Dependovirus/genetics , Mice , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Herpes Simplex/genetics , Herpes Simplex/virology , Herpes Simplex/therapy , Disease Models, Animal , Virus Latency/genetics , Humans , Genetic Vectors/genetics , Vero Cells , Genetic Therapy/methods , Herpes Genitalis/therapy , Herpes Genitalis/virology , DNA, Viral/genetics
2.
Mol Ther Methods Clin Dev ; 20: 258-275, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33473359

ABSTRACT

Chronic hepatitis B virus (HBV) infection is a major public health problem. New treatment approaches are needed because current treatments do not target covalently closed circular DNA (cccDNA), the template for HBV replication, and rarely clear the virus. We harnessed adeno-associated virus (AAV) vectors and CRISPR-Staphylococcus aureus (Sa)Cas9 to edit the HBV genome in liver-humanized FRG mice chronically infected with HBV and receiving entecavir. Gene editing was detected in livers of five of eight HBV-specific AAV-SaCas9-treated mice, but not control mice, and mice with detectable HBV gene editing showed higher levels of SaCas9 delivery to HBV+ human hepatocytes than those without gene editing. HBV-specific AAV-SaCas9 therapy significantly improved survival of human hepatocytes, showed a trend toward decreasing total liver HBV DNA and cccDNA, and was well tolerated. This work provides evidence for the feasibility and safety of in vivo gene editing for chronic HBV infections, and it suggests that with further optimization, this approach may offer a plausible way to treat or even cure chronic HBV infections.

3.
Nat Commun ; 11(1): 4148, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811834

ABSTRACT

We evaluate gene editing of HSV in a well-established mouse model, using adeno-associated virus (AAV)-delivered meganucleases, as a potentially curative approach to treat latent HSV infection. Here we show that AAV-delivered meganucleases, but not CRISPR/Cas9, mediate highly efficient gene editing of HSV, eliminating over 90% of latent virus from superior cervical ganglia. Single-cell RNA sequencing demonstrates that both HSV and individual AAV serotypes are non-randomly distributed among neuronal subsets in ganglia, implying that improved delivery to all neuronal subsets may lead to even more complete elimination of HSV. As predicted, delivery of meganucleases using a triple AAV serotype combination results in the greatest decrease in ganglionic HSV loads. The levels of HSV elimination observed in these studies, if translated to humans, would likely significantly reduce HSV reactivation, shedding, and lesions. Further optimization of meganuclease delivery and activity is likely possible, and may offer a pathway to a cure for HSV infection.


Subject(s)
Deoxyribonucleases/genetics , Dependovirus/genetics , Eye Infections/therapy , Gene Editing/methods , Herpes Simplex/therapy , Herpesvirus 1, Human/genetics , Virus Latency/genetics , Animals , CRISPR-Cas Systems/genetics , Cells, Cultured , Chlorocebus aethiops , Eye Infections/genetics , Eye Infections/virology , Female , HEK293 Cells , Herpes Simplex/genetics , Herpesvirus 1, Human/pathogenicity , Humans , Mice , Neurons/metabolism , Neurons/virology , RNA-Seq , Single-Cell Analysis , Superior Cervical Ganglion/metabolism , Superior Cervical Ganglion/virology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...