Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36556543

ABSTRACT

Cu-content La1-xSrxNi1-yCuyO3-δ perovskites with A-site strontium doping have been tuned as cobalt-free cathode materials for high-performance anode-supported SOFCs, working at an intermediate-temperature range. All obtained oxides belong to the R-3c trigonal system, and phase transitions from the R-3c space group to a Pm-3m simple perovskite have been observed by HT-XRD studies. The substitution of lanthanum with strontium lowers the phase transition temperature, while increasing the thermal expansion coefficient (TEC) and oxygen non-stoichiometry δ of the studied materials. The thermal expansion is anisotropic, and TEC values are similar to commonly used solid electrolytes (e.g., 14.1 × 10-6 K-1 for La0.95Sr0.05Ni0.5Cu0.5O3-δ). The oxygen content of investigated compounds has been determined as a function of temperature. All studied materials are chemically compatible with GDC-10 but react with LSGM and 8YSZ electrolytes. The anode-supported SOFC with a La0.95Sr0.05Ni0.5Cu0.5O3-δ cathode presents an excellent power density of 445 mW·cm-2 at 650 °C in humidified H2. The results indicate that La1-xSrxNi1-yCuyO3-δ perovskites with strontium doping at the A-site can be qualified as promising cathode candidates for anode-supported SOFCs, yielding promising electrochemical performance in the intermediate-temperature range.

2.
Materials (Basel) ; 15(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35407821

ABSTRACT

The development of new chemically resistant anodes for protonic ceramic fuel cells (PCFCs) is urgently required to avoid the costly deep hydrogen purification method. Ba0.95Ca0.05Ce0.9Y0.1O3-δ (5CBCY), which is more chemically resistant than BaCaCe0.9Y0.1O3-δ, was here tested as a component of a composite NiO-5CBCY anode material. A preparation slurry comprising 5CBCY, NiO, graphite, and an organic medium was tape cast, sintered and subjected to thermal treatment in 10 vol.% H2 in Ar at 700 °C. Differential thermal analysis, thermogravimetry, quadrupole mass spectrometry, X-ray diffraction analysis, scanning electron microscopy, the AC four-probe method and electrochemical impedance spectroscopy were used for the investigation. The electrical conductivity of the Ni-5CBCY in H2-Ar at 700 °C was 1.1 S/cm. In the same gas atmosphere but with an additional 5 vol.% CO2, it was slightly lower, at 0.8 S/cm. The Ni-5CBCY cermet exhibited repeatable electrical conductivity values during Ni-to-NiO oxidation cycles and NiO-to-Ni reduction in the 5CBCY matrix, making it sufficient for preliminary testing in PCFCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...