Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34667130

ABSTRACT

BACKGROUND AND OBJECTIVES: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease primarily affecting the peripheral nervous system. However, several noncontrolled studies have suggested concomitant inflammatory CNS demyelination similar to multiple sclerosis. The aim of this study was to investigate an involvement of the visual pathway in patients with CIDP. METHODS: In this prospective cross-sectional study, we used high-resolution spectral-domain optical coherence tomography to compare the thickness of the peripapillary retinal nerve fiber layer and the deeper macular retinal layers as well as the total macular volume (TMV) in 22 patients with CIDP and 22 age-matched and sex-matched healthy control (HC) individuals. Retinal layers were semiautomatically segmented by the provided software and were correlated with clinical measures and nerve conduction studies. RESULTS: In patients with CIDP compared with healthy age-matched and sex-matched controls, we found slight but significant volume reductions of the ganglion cell/inner plexiform layer complex (CIDP 1.86 vs HC 1.95 mm3, p = 0.015), the retinal pigment epithelium (CIDP 0.38 vs HC 0.40 mm3, p = 0.02), and the TMV (CIDP 8.48 vs HC 8.75 mm3, p = 0.018). The ganglion cell layer volume and motor nerve conduction velocity were positively associated (B = 0.002, p = 0.02). DISCUSSION: Our data reveal subtle retinal neurodegeneration in patients with CIDP, providing evidence for visual pathway involvement, detectable by OCT. The results need corroboration in independent, larger cohorts.


Subject(s)
Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/pathology , Retina/pathology , Visual Pathways/pathology , Adult , Aged , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Neural Conduction/physiology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnostic imaging , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/physiopathology , Prospective Studies , Retina/diagnostic imaging , Tomography, Optical Coherence , Visual Pathways/diagnostic imaging
2.
Anesth Analg ; 104(4): 898-903, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17377103

ABSTRACT

BACKGROUND: The effect of sevoflurane on the neuroregenerative potential after neuronal injury is unclear. We investigated the effect of low and high concentrations of sevoflurane on endogenous neurogenesis after cerebral ischemia. METHODS: Anesthetized and ventilated rats were randomized to four different treatment groups. Groups 1 and 2: 1.4% sevoflurane; Groups 3 and 4: 2.8% sevoflurane. In Groups 1 and 3, no cerebral ischemia was induced (sham-operated). In Groups 2 and 4, 10 min of forebrain ischemia was induced by bilateral carotid artery occlusion plus hemorrhagic hypotension. Physiological variables were maintained constant. Bromodeoxyuridine was given as a marker of neurogenesis. After 28 days brains were perfused. Histopathological damage of the hippocampus was evaluated in hematoxylin and eosin (HE) stained sections using the HE-index (0 = no damage; 1 = 1%-10% damage; 2 = 11%-50% damage; 3 = 51%-100% damage). Immunohistochemistry was used to detect bromodeoxyuridine-positive neurons. Eight untreated rats were investigated as naive controls (Group 5). RESULTS: In neither sham-operated group was histopathological damage or change in neurogenesis observed compared to naive controls. In rats anesthetized with 1.4% sevoflurane, cerebral ischemia caused mild neuronal damage (HE-index of 0.64 +/- 0.84) and increased neurogenesis by 60% when compared with respective sham-operated animals; with 2.8% sevoflurane, the HE-index was 1.22 +/- 1.14, and the number of newly generated neurons increased by 230% when compared with respective sham-operated animals. CONCLUSION: The present data suggest that high concentrations of sevoflurane stimulate neurogenesis in the dentate gyrus after cerebral ischemia.


Subject(s)
Anesthetics, Inhalation/pharmacology , Brain Ischemia/physiopathology , Dentate Gyrus/drug effects , Methyl Ethers/pharmacology , Nerve Regeneration/drug effects , Prosencephalon/physiopathology , Animals , Brain Ischemia/pathology , Cell Proliferation/drug effects , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/physiopathology , Male , Neurons/drug effects , Random Allocation , Rats , Rats, Sprague-Dawley , Sevoflurane
SELECTION OF CITATIONS
SEARCH DETAIL
...