Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; 13(13): e2304058, 2024 May.
Article in English | MEDLINE | ID: mdl-38339837

ABSTRACT

Cultured Meat (CM) is a growing field in cellular agriculture, driven by the environmental impact of conventional meat production, which contributes to climate change and occupies ≈70% of arable land. As demand for meat alternatives rises, research in this area expands. CM production relies on tissue engineering techniques, where a limited number of animal cells are cultured in vitro and processed to create meat-like tissue comprising muscle and adipose components. Currently, CM is primarily produced on a small scale in pilot facilities. Producing a large cell mass based on suitable cell sources and bioreactors remains challenging. Advanced manufacturing methods and innovative materials are required to subsequently process this cell mass into CM products on a large scale. Consequently, CM is closely linked with biofabrication, a suite of technologies for precisely arranging cellular aggregates and cell-material composites to construct specific structures, often using robotics. This review provides insights into contemporary biomedical biofabrication technologies, focusing on significant advancements in muscle and adipose tissue biofabrication for CM production. Novel materials for biofabricating CM are also discussed, emphasizing their edibility and incorporation of healthful components. Finally, initial studies on biofabricated CM are examined, addressing current limitations and future challenges for large-scale production.


Subject(s)
Adipose Tissue , Meat , Tissue Engineering , Tissue Engineering/methods , Animals , Adipose Tissue/cytology , Adipose Tissue/metabolism , Humans , Tissue Scaffolds/chemistry , In Vitro Meat
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834966

ABSTRACT

Adipose-derived stem cells (ASCs) are a subpopulation of mesenchymal stem cells. Compared to bone marrow-derived stem cells, they can be harvested with minimal invasiveness. ASCs can be easily expanded and were shown to be able to differentiate into several clinically relevant cell types. Therefore, this cell type represents a promising component in various tissue engineering and medical approaches (e.g., cell therapy). In vivo cells are surrounded by the extracellular matrix (ECM) that provides a wide range of tissue-specific physical and chemical cues, such as stiffness, topography, and chemical composition. Cells can sense the characteristics of their ECM and respond to them in a specific cellular behavior (e.g., proliferation or differentiation). Thus, in vitro biomaterial properties represent an important tool to control ASCs behavior. In this review, we give an overview of the current research in the mechanosensing of ASCs and current studies investigating the impact of material stiffens, topography, and chemical modification on ASC behavior. Additionally, we outline the use of natural ECM as a biomaterial and its interaction with ASCs regarding cellular behavior.


Subject(s)
Adipose Tissue , Mesenchymal Stem Cells , Adipose Tissue/metabolism , Adipocytes , Mesenchymal Stem Cells/metabolism , Cell Differentiation , Biocompatible Materials/metabolism
3.
Gels ; 8(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36286112

ABSTRACT

Adipose tissue is related to the development and manifestation of multiple diseases, demonstrating the importance of suitable in vitro models for research purposes. In this study, adipose tissue lobuli were explanted, cultured, and used as an adipose tissue control to evaluate in vitro generated adipose tissue models. During culture, lobule exhibited a stable weight, lactate dehydrogenase, and glycerol release over 15 days. For building up in vitro adipose tissue models, we adapted the biomaterial gelatin methacryloyl (GelMA) composition and handling to homogeneously mix and bioprint human primary mature adipocytes (MA) and adipose-derived stem cells (ASCs), respectively. Accelerated cooling of the bioink turned out to be essential for the homogeneous distribution of lipid-filled MAs in the hydrogel. Last, we compared manual and bioprinted GelMA hydrogels with MA or ASCs and the explanted lobules to evaluate the impact of the printing process and rate the models concerning the physiological reference. The viability analyses demonstrated no significant difference between the groups due to additive manufacturing. The staining of intracellular lipids and perilipin A suggest that GelMA is well suited for ASCs and MA. Therefore, we successfully constructed physiological in vitro models by bioprinting MA-containing GelMA bioinks.

4.
Gels ; 8(7)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35877505

ABSTRACT

Due to its wide-ranging endocrine functions, adipose tissue influences the whole body's metabolism. Engineering long-term stable and functional human adipose tissue is still challenging due to the limited availability of suitable biomaterials and adequate cell maturation. We used gellan gum (GG) to create manual and bioprinted adipose tissue models because of its similarities to the native extracellular matrix and its easily tunable properties. Gellan gum itself was neither toxic nor monocyte activating. The resulting hydrogels exhibited suitable viscoelastic properties for soft tissues and were stable for 98 days in vitro. Encapsulated human primary adipose-derived stem cells (ASCs) were adipogenically differentiated for 14 days and matured for an additional 84 days. Live-dead staining showed that encapsulated cells stayed viable until day 98, while intracellular lipid staining showed an increase over time and a differentiation rate of 76% between days 28 and 56. After 4 weeks of culture, adipocytes had a univacuolar morphology, expressed perilipin A, and secreted up to 73% more leptin. After bioprinting establishment, we demonstrated that the cells in printed hydrogels had high cell viability and exhibited an adipogenic phenotype and function. In summary, GG-based adipose tissue models show long-term stability and allow ASCs maturation into functional, univacuolar adipocytes.

5.
Gels ; 8(2)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35200476

ABSTRACT

The world population is growing and alternative ways of satisfying the increasing demand for meat are being explored, such as using animal cells for the fabrication of cultured meat. Edible biomaterials are required as supporting structures. Hence, we chose agarose, gellan and a xanthan-locust bean gum blend (XLB) as support materials with pea and soy protein additives and analyzed them regarding material properties and biocompatibility. We successfully built stable hydrogels containing up to 1% pea or soy protein. Higher amounts of protein resulted in poor handling properties and unstable gels. The gelation temperature range for agarose and gellan blends is between 23-30 °C, but for XLB blends it is above 55 °C. A change in viscosity and a decrease in the swelling behavior was observed in the polysaccharide-protein gels compared to the pure polysaccharide gels. None of the leachates of the investigated materials had cytotoxic effects on the myoblast cell line C2C12. All polysaccharide-protein blends evaluated turned out as potential candidates for cultured meat. For cell-laden gels, the gellan blends were the most suitable in terms of processing and uniform distribution of cells, followed by agarose blends, whereas no stable cell-laden gels could be formed with XLB blends.

6.
Biotechnol Bioeng ; 119(4): 1142-1156, 2022 04.
Article in English | MEDLINE | ID: mdl-35092015

ABSTRACT

Due to its availability and minimal invasive harvesting human adipose tissue-derived extracellular matrix (dECM) is often used as a biomaterial in various tissue engineering and healthcare applications. Next to dECM, cell-derived ECM (cdECM) can be generated by and isolated from in vitro cultured cells. So far both types of ECM were investigated extensively toward their application as (bio)material in tissue engineering and healthcare. However, a systematic characterization and comparison of soft tissue dECM and cdECM is still missing. In this study, we characterized dECM from human adipose tissue, as well as cdECM from human adipose-derived stem cells, toward their molecular composition, structural characteristics, and biological purity. The dECM was found to exhibit higher levels of collagens and lower levels of sulfated glycosaminoglycans compared with cdECMs. Structural characteristics revealed an immature state of the fibrous part of cdECM samples. By the identified differences, we aim to support researchers in the selection of a suitable ECM-based biomaterial for their specific application and the interpretation of obtained results.


Subject(s)
Biocompatible Materials , Extracellular Matrix , Decellularized Extracellular Matrix , Extracellular Matrix/chemistry , Humans , Stem Cells , Tissue Engineering/methods , Tissue Scaffolds/chemistry
7.
Chembiochem ; 23(1): e202100266, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34343379

ABSTRACT

The extracellular matrix (ECM) represents the natural environment of cells in tissue and therefore is a promising biomaterial in a variety of applications. Depending on the purpose, it is necessary to equip the ECM with specific addressable functional groups for further modification with bioactive molecules, for controllable cross-linking and/or covalent binding to surfaces. Metabolic glycoengineering (MGE) enables the specific modification of the ECM with such functional groups without affecting the native structure of the ECM. In a previous approach (S. M. Ruff, S. Keller, D. E. Wieland, V. Wittmann, G. E. M. Tovar, M. Bach, P. J. Kluger, Acta Biomater. 2017, 52, 159-170), we demonstrated the modification of an ECM with azido groups, which can be addressed by bioorthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC). Here, we demonstrate the modification of an ECM with dienophiles (terminal alkenes, cyclopropene), which can be addressed by an inverse-electron-demand Diels-Alder (IEDDA) reaction. This reaction is cell friendly as there are no cytotoxic catalysts needed. We show the equipment of the ECM with a bioactive molecule (enzyme) and prove that the functional groups do not influence cellular behavior. Thus, this new material has great potential for use as a biomaterial, which can be individually modified in a wide range of applications.


Subject(s)
Cyclopropanes/chemical synthesis , Click Chemistry , Cycloaddition Reaction , Cyclopropanes/chemistry , Electrons , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism
8.
Gels ; 7(4)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34842704

ABSTRACT

Highly viscous bioinks offer great advantages for the three-dimensional fabrication of cell-laden constructs by microextrusion printing. However, no standardised method of mixing a high viscosity biomaterial ink and a cell suspension has been established so far, leading to non-reproducible printing results. A novel method for the homogeneous and reproducible mixing of the two components using a mixing unit connecting two syringes is developed and investigated. Several static mixing units, based on established mixing designs, were adapted and their functionality was determined by analysing specific features of the resulting bioink. As a model system, we selected a highly viscous ink consisting of fresh frozen human blood plasma, alginate, and methylcellulose, and a cell suspension containing immortalized human mesenchymal stem cells. This bioink is crosslinked after fabrication. A pre-crosslinked gellan gum-based bioink providing a different extrusion behaviour was introduced to validate the conclusions drawn from the model system. For characterisation, bioink from different zones within the mixing device was analysed by measurement of its viscosity, shape fidelity after printing and visual homogeneity. When taking all three parameters into account, a comprehensive and reliable comparison of the mixing quality was possible. In comparison to the established method of manual mixing inside a beaker using a spatula, a significantly higher proportion of viable cells was detected directly after mixing and plotting for both bioinks when the mixing unit was used. A screw-like mixing unit, termed "HighVisc", was found to result in a homogenous bioink after a low number of mixing cycles while achieving high cell viability rates.

9.
J Biomed Mater Res A ; 109(1): 77-91, 2021 01.
Article in English | MEDLINE | ID: mdl-32421917

ABSTRACT

Gelatin is one of the most prominent biopolymers in biomedical material research and development. It is frequently used in hybrid hydrogels, which combine the advantageous properties of bio-based and synthetic polymers. To prevent the biological component from leaching out of the hydrogel, the biomolecules can be equipped with azides. Those groups can be used to immobilize gelatin covalently in hydrogels by the highly selective and specific azide-alkyne cycloaddition. In this contribution, we functionalized gelatin with azides at its lysine residues by diazo transfer, which offers the great advantage of only minimal side-chain extension. Approximately 84-90% of the amino groups are modified as shown by 1 H-NMR spectroscopy, 2,4,6-trinitrobenzenesulfonic acid assay as well as Fourier-transform infrared spectroscopy, rheology, and the determination of the isoelectric point. Furthermore, the azido-functional gelatin is incorporated into hydrogels based on poly(ethylene glycol) diacrylate (PEG-DA) at different concentrations (0.6, 3.0, and 5.5%). All hydrogels were classified as noncyctotoxic with significantly enhanced cell adhesion of human fibroblasts on their surfaces compared to pure PEG-DA hydrogels. Thus, the new gelatin derivative is found to be a very promising building block for tailoring the bioactivity of materials.


Subject(s)
Azides/chemistry , Diazonium Compounds/chemistry , Gelatin/chemistry , Hydrogels/chemistry , Lysine/chemistry , Biocompatible Materials , Cell Adhesion/drug effects , Cell Survival , Cycloaddition Reaction , Fibroblasts/drug effects , Humans , Polyethylene Glycols
10.
Biotechnol Bioeng ; 117(10): 3160-3172, 2020 10.
Article in English | MEDLINE | ID: mdl-32619017

ABSTRACT

Tissue constructs of physiologically relevant scale require a vascular system to maintain cell viability. However, in vitro vascularization of engineered tissues is still a major challenge. Successful approaches are based on a feeder layer (FL) to support vascularization. Here, we investigated whether the supporting effect on the self-assembled formation of prevascular-like structures by microvascular endothelial cells (mvECs) originates from the FL itself or from its extracellular matrix (ECM). Therefore, we compared the influence of ECM, either derived from adipose-derived stem cells (ASCs) or adipogenically differentiated ASCs, with the classical cell-based FL. All cell-derived ECM (cdECM) substrates enabled mvEC growth with high viability. Prevascular-like structures were visualized by immunofluorescence staining of endothelial surface protein CD31 and could be observed on all cdECM and FL substrates but not on control substrate collagen I. On adipogenically differentiated ECM, longer and higher branched structures could be found compared with stem cell cdECM. An increased concentration of proangiogenic factors was found in cdECM substrates and FL approaches compared with controls. Finally, the expression of proteins associated with tube formation (E-selectin and thrombomodulin) was confirmed. These results highlight cdECM as promising biomaterial for adipose tissue engineering by inducing the spontaneous formation of prevascular-like structures by mvECs.


Subject(s)
Adipose Tissue/cytology , Biocompatible Materials/chemistry , Endothelial Cells/cytology , Extracellular Matrix/chemistry , Stem Cells/cytology , Adipose Tissue/blood supply , Cell Differentiation/physiology , Cells, Cultured , Extracellular Matrix/metabolism , Humans , Neovascularization, Physiologic
11.
ACS Appl Mater Interfaces ; 12(24): 26868-26879, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32426964

ABSTRACT

In recent years, the development and application of decellularized extracellular matrices (ECMs) for use as biomaterials have grown rapidly. These cell-derived matrices (CDMs) represent highly bioactive and biocompatible materials consisting of a complex assembly of biomolecules. Even though CDMs mimic the natural microenvironment of cells in vivo very closely, they still lack specifically addressable functional groups, which are often required to tailor a biomaterial functionality by bioconjugation. To overcome this limitation, metabolic glycoengineering has emerged as a powerful tool to equip CDMs with chemical groups such as azides. These small chemical handles are known for their ability to undergo bioorthogonal click reactions, which represent a desirable reaction type for bioconjugation. However, ECM insolubility makes its processing very challenging. In this contribution, we isolated both the unmodified ECM and azide-modified clickECM by osmotic lysis. In a first step, these matrices were concentrated to remove excessive water from the decellularization step. Next, the hydrogel-like ECM and clickECM films were mechanically fragmentized, resulting in easy to pipette suspensions with fragment sizes ranging from 7.62 to 31.29 µm (as indicated by the mean d90 and d10 values). The biomolecular composition was not impaired as proven by immunohistochemistry. The suspensions were used for the reproducible generation of surface coatings, which proved to be homogeneous in terms of ECM fragment sizes and coating thicknesses (the mean coating thickness was found to be 33.2 ± 7.3 µm). Furthermore, they were stable against fluid-mechanical abrasion in a laminar flow cell. When primary human fibroblasts were cultured on the coated substrates, an increased bioactivity was observed. By conjugating the azides within the clickECM coatings with alkyne-coupled biotin molecules, a bioconjugation platform was obtained, where the biotin-streptavidin interaction could be used. Its applicability was demonstrated by equipping the bioactive clickECM coatings with horseradish peroxidase as a model enzyme.


Subject(s)
Azides/chemistry , Extracellular Matrix/chemistry , Biocompatible Materials/chemistry , Biotin/chemistry , Biotinylation , Click Chemistry/methods
12.
Article in English | MEDLINE | ID: mdl-32457884

ABSTRACT

In the field of skin tissue engineering, the development of physiologically relevant in vitro skin models comprising all skin layers, namely epidermis, dermis, and subcutis, is a great challenge. Increasing regulatory requirements and the ban on animal experiments for substance testing demand the development of reliable and in vivo-like test systems, which enable high-throughput screening of substances. However, the reproducibility and applicability of in vitro testing has so far been insufficient due to fibroblast-mediated contraction. To overcome this pitfall, an advanced 3-layered skin model was developed. While the epidermis of standard skin models showed an 80% contraction, the initial epidermal area of our advanced skin models was maintained. The improved barrier function of the advanced models was quantified by an indirect barrier function test and a permeability assay. Histochemical and immunofluorescence staining of the advanced model showed well-defined epidermal layers, a dermal part with distributed human dermal fibroblasts and a subcutis with round-shaped adipocytes. The successful response of these advanced 3-layered models for skin irritation testing demonstrated the suitability as an in vitro model for these clinical tests: only the advanced model classified irritative and non-irritative substances correctly. These results indicate that the advanced set up of the 3-layered in vitro skin model maintains skin barrier function and therefore makes them more suitable for irritation testing.

13.
RSC Adv ; 10(58): 35273-35286, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35515672

ABSTRACT

Azide-bearing cell-derived extracellular matrices ("clickECMs") have emerged as a highly exciting new class of biomaterials. They conserve substantial characteristics of the natural extracellular matrix (ECM) and offer simultaneously small abiotic functional groups that enable bioorthogonal bioconjugation reactions. Despite their attractiveness, investigation of their biomolecular composition is very challenging due to the insoluble and highly complex nature of cell-derived matrices (CDMs). Yet, thorough qualitative and quantitative analysis of the overall material composition, organisation, localisation, and distribution of typical ECM-specific biomolecules is essential for consistent advancement of CDMs and the understanding of the prospective functions of the developed biomaterial. In this study, we evaluated frequently used methods for the analysis of complex CDMs. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and (immune)histochemical staining methods in combination with several microscopic techniques were found to be highly eligible. Commercially available colorimetric protein assays turned out to deliver inaccurate information on CDMs. In contrast, we determined the nitrogen content of CDMs by elementary analysis and converted it into total protein content using conversion factors which were calculated from matching amino acid compositions. The amount of insoluble collagens was assessed based on the hydroxyproline content. The Sircol™ assay was identified as a suitable method to quantify soluble collagens while the Blyscan™ assay was found to be well-suited for the quantification of sulphated glycosaminoglycans (sGAGs). Eventually, we propose a series of suitable methods to reliably characterise the biomolecular composition of fibroblast-derived clickECM.

14.
J Biomed Mater Res B Appl Biomater ; 108(4): 1527-1535, 2020 05.
Article in English | MEDLINE | ID: mdl-31622027

ABSTRACT

Human adipose-derived stem cells (hASCs) have become an important cell source for the use in tissue engineering and other medical applications. Not every biomaterial is suitable for human cell culture and requires surface modifications to enable cell adhesion and proliferation. Our hypothesis is that chemical surface modifications introduced by low-discharge plasma enhance the adhesion and proliferation of hASCs. Polystyrene (PS) surfaces were modified either by ammonia (NH3 ), carbon dioxide (CO2 ) or acrylic acid (AAc) plasma. The results show that the initial cell adhesion is significantly higher on all modified surfaces than on unmodified material as evaluated by bright field microscopy, live/dead staining, total DNA amount and scanning electron microscopy. The formation of focal adhesions was well pronounced on the Tissue Culture PS, NH3 -, and CO2 -plasma modified samples. The number of matured fibrillar adhesions was significantly higher on NH3 -plasma modified surfaces than on all other surfaces. Our study validates the suitability of chemical plasma activation and represents a method to enhance hASCs adhesion and improved cell expansion. All chemical modification promoted hASCs adhesion and can therefore be used for the modification of different scaffold materials whereby NH3 -plasma modified surfaces resulted in the best outcome concerning hASCs adhesion and proliferation.


Subject(s)
Adipose Tissue/metabolism , Cell Proliferation/drug effects , Mesenchymal Stem Cells/metabolism , Plasma Gases , Adipose Tissue/cytology , Cell Adhesion/drug effects , Humans , Mesenchymal Stem Cells/cytology , Plasma Gases/chemistry , Plasma Gases/pharmacology , Polystyrenes/chemistry
15.
Differentiation ; 110: 19-28, 2019.
Article in English | MEDLINE | ID: mdl-31568881

ABSTRACT

In vitro models of human adipose tissue may serve as beneficial alternatives to animal models to study basic biological processes, identify new drug targets, and as soft tissue implants. With this approach, we aimed to evaluate adipose-derived stem cells (ASC) and mature adipocytes (MA) comparatively for the application in the in vitro setup of adipose tissue constructs to imitate native adipose tissue physiology. We used human primary MAs and human ASCs, differentiated for 14 days, and encapsulated them in collagen type I hydrogels to build up a three-dimensional (3D) adipose tissue model. The maintenance of the models was analyzed after seven days based on a viability staining. Further, the expression of the adipocyte specific protein perilipin A and the release of leptin and glycerol were evaluated. Gene transcription profiles of models based on dASCs and MAs were analyzed with regard to native adipose tissue. Compared to MAs, dASCs showed an immature differentiation state. Further, gene transcription of MAs suggests a behavior closer to native tissue in terms of angiogenesis, which supports MAs as preferred cell type. In contrast to native adipose tissue, genes of de novo lipogenesis and tissue remodeling were upregulated in the in vitro attempts.


Subject(s)
Adipocytes/cytology , Adipose Tissue/cytology , Cell Differentiation/physiology , Stem Cells/cytology , Adipogenesis/physiology , Cell Culture Techniques/methods , Humans , Leptin/metabolism
16.
Biomed Tech (Berl) ; 64(4): 397-406, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-30226201

ABSTRACT

Size and function of bioartificial tissue models are still limited due to the lack of blood vessels and dynamic perfusion for nutrient supply. In this study, we evaluated the use of cytocompatible methacryl-modified gelatin for the fabrication of a hydrogel-based tube by dip-coating and subsequent photo-initiated cross-linking. The wall thickness of the tubes and the diameter were tuned by the degree of gelatin methacryl-modification and the number of dipping cycles. The dipping temperature of the gelatin solution was adjusted to achieve low viscous fluids of approximately 0.1 Pa s and was different for gelatin derivatives with different modification degrees. A versatile perfusion bioreactor for the supply of surrounding tissue models was developed, which can be adapted to several geometries and sizes of blood-vessel mimicking tubes. The manufactured bendable gelatin tubes were permeable for water and dissolved substances, like Nile Blue and serum albumin. As a proof of concept, human fibroblasts in a three-dimensional collagen tissue model were successfully supplied with nutrients via the central gelatin tube under dynamic conditions for 2 days. Moreover, the tubes could be used as scaffolds to build-up a functional and viable endothelial layer. Hence, the presented tools can contribute to solving current challenges in tissue engineering.


Subject(s)
Gelatin/chemistry , Hydrogels/chemistry , Tissue Engineering/methods , Bioreactors , Humans
17.
ASAIO J ; 65(5): 422-429, 2019 07.
Article in English | MEDLINE | ID: mdl-30044238

ABSTRACT

Although state-of-the-art treatments of respiratory failure clearly have made some progress in terms of survival in patients suffering from severe respiratory system disorders, such as acute respiratory distress syndrome (ARDS), they failed to significantly improve the quality of life in patients with acute or chronic lung failure, including severe acute exacerbations of chronic obstructive pulmonary disease or ARDS as well. Limitations of standard treatment modalities, which largely rely on conventional mechanical ventilation, emphasize the urgent, unmet clinical need for developing novel (bio)artificial respiratory assist devices that provide extracorporeal gas exchange with a focus on direct extracorporeal CO2 removal from the blood. In this review, we discuss some of the novel concepts and critical prerequisites for such respiratory lung assist devices that can be used with an adequate safety profile, in the intensive care setting, as well as for long-term domiciliary therapy in patients with chronic ventilatory failure. Specifically, we describe some of the pivotal steps, such as device miniaturization, passivation of the blood-contacting surfaces by chemical surface modifications, or endothelial cell seeding, all of which are required for converting current lung assist devices into ambulatory lung assist device for long-term use in critically ill patients. Finally, we also discuss some of the risks and challenges for the long-term use of ambulatory miniaturized bioartificial lungs.


Subject(s)
Respiration, Artificial/instrumentation , Respiration, Artificial/trends , Respiratory Insufficiency/therapy , Bioengineering , Humans , Respiratory Distress Syndrome/therapy
18.
J Biomed Mater Res B Appl Biomater ; 107(5): 1431-1439, 2019 07.
Article in English | MEDLINE | ID: mdl-30267635

ABSTRACT

Artificial adipose tissue (AT) constructs are urgently needed to treat severe wounds, to replace removed tissue, or for the use as in vitro model to screen for potential drugs or study metabolic pathways. The clinical translation of products is mostly prevented by the absence of a vascular component that would allow a sustainable maintenance and an extension of the construct to a relevant size. With this study, we aimed to evaluate the suitability of a novel material based on bacterial cellulose (CBM) on the defined adipogenic differentiation of human adipose-derived stem cells (ASCs) and the maintenance of the received adipocytes (diffASCs) and human microvascular endothelial cells (mvECs) in mono- and coculture. A slight acceleration of adipogenic differentiation over regular tissue culture polystyrene (TCPS) was seen on CBM under defined conditions, whereas on the maintenance of the generated adipocytes, comparable effects were detected for both materials. CBM facilitated the formation of vascular-like structures in monoculture of mvECs, which was not observed on TCPS. By contrast, vascular-like structures were detected in CBM and TCPS in coculture by the presence of diffASCs. Concluding, CBM represents a promising material in vascularized AT engineering with the potential to speed up and simplify the in vitro setup of engineered products. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1431-1439, 2019.


Subject(s)
Adipose Tissue , Cellulose/chemistry , Endothelial Cells , Neovascularization, Physiologic , Stem Cells , Tissue Engineering , Adipose Tissue/blood supply , Adipose Tissue/cytology , Adipose Tissue/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Stem Cells/cytology , Stem Cells/metabolism
20.
Biotechnol Bioeng ; 115(10): 2643-2653, 2018 10.
Article in English | MEDLINE | ID: mdl-29981277

ABSTRACT

The coculture of osteogenic and angiogenic cells and the resulting paracrine signaling via soluble factors are supposed to be crucial for successfully engineering vascularized bone tissue equivalents. In this study, a coculture system combining primary human adipose-derived stem cells (hASCs) and primary human dermal microvascular endothelial cells (HDMECs) within two types of hydrogels based on methacryloyl-modified gelatin (GM) as three-dimensional scaffolds was examined for its support of tissue specific cell functions. HDMECs, together with hASCs as supporting cells, were encapsulated in soft GM gels and were indirectly cocultured with hASCs encapsulated in stiffer GM hydrogels additionally containing methacrylate-modified hyaluronic acid and hydroxyapatite particles. After 14 days, the hASC in the stiffer gels (constituting the "bone gels") expressed matrix proteins like collagen type I and fibronectin, as well as bone-specific proteins osteopontin and alkaline phosphatase. After 14 days of coculture with HDMEC-laden hydrogels, the viscoelastic properties of the bone gels were significantly higher compared with the gels in monoculture. Within the soft vascularization gels, the formed capillary-like networks were significantly longer after 14 days of coculture than the structures in the control gels. In addition, the stability as well as the complexity of the vascular networks was significantly increased by coculture. We discussed and concluded that osteogenic and angiogenic signals from the culture media as well as from cocultured cell types, and tissue-specific hydrogel composition all contribute to stimulate the interplay between osteogenesis and angiogenesis in vitro and are a basis for engineering vascularized bone.


Subject(s)
Bone Matrix/metabolism , Cell Differentiation , Endothelial Cells/metabolism , Hydrogels/chemistry , Osteogenesis , Stem Cells/metabolism , Tissue Scaffolds/chemistry , Adult , Coculture Techniques , Durapatite/chemistry , Endothelial Cells/cytology , Female , Gelatin/chemistry , Humans , Hyaluronic Acid/chemistry , Middle Aged , Neovascularization, Physiologic , Osteopontin/biosynthesis , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...