Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Diagn Pathol ; 19(1): 70, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796421

ABSTRACT

IDH1 and IDH2 mutational status is a critical biomarker with diagnostic, prognostic, and treatment implications in glioma. Although IDH1 p.R132H-specific immunohistochemistry is available, it is unable to identify other mutations in IDH1/2. Next-generation sequencing can accurately determine IDH1/2 mutational status but suffers from long turnaround time when urgent treatment planning and initiation is medically necessary. The Idylla assay can detect IDH1/2 mutational status from unstained formalin-fixed paraffin-embedded (FFPE) slides in as little as a few hours. In a clinical validation, we demonstrate clinical accuracy of 97% compared to next-generation sequencing. Sensitivity studies demonstrated a limit of detection of 2.5-5% variant allele frequency, even at DNA inputs below the manufacturer's recommended threshold. Overall, the assay is an effective and accurate method for rapid determination of IDH1/2 mutational status.


Subject(s)
Brain Neoplasms , Glioma , Isocitrate Dehydrogenase , Mutation , Humans , Isocitrate Dehydrogenase/genetics , Glioma/genetics , Glioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/enzymology , DNA Mutational Analysis/methods , Paraffin Embedding , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , High-Throughput Nucleotide Sequencing , Formaldehyde , Tissue Fixation/methods , Reproducibility of Results
2.
Pathobiology ; 91(1): 76-88, 2024.
Article in English | MEDLINE | ID: mdl-37490880

ABSTRACT

INTRODUCTION: A variety of gene rearrangements and molecular alterations are key drivers in the pathobiology of acute leukemia and myeloid disorders; current classification systems increasingly incorporate these findings in diagnostic algorithms. Therefore, clinical laboratories require versatile tools, which can detect an increasing number and variety of molecular and cytogenetic alterations of clinical significance. METHODS: We validated an RNA-based next-generation sequencing (NGS) assay that enables the detection of: (i) numerous hybrid fusion transcripts (including rare/novel gene partners), (ii) aberrantly expressed EVI1 (MECOM) and IKZF1 (Del exons 4-7) transcripts, and (iii) hotspot variants in KIT, ABL1, NPM1 (relevant in the context of gene rearrangement status). RESULTS: For hybrid fusion transcripts, the assay showed 98-100% concordance for known positive and negative samples, with an analytical sensitivity (i.e., limit of detection) of approximately 0.8% cells. Samples with underlying EVI1 (MECOM) translocations demonstrated increased EVI1 (MECOM) expression. Aberrant IKZF1 (Del exons 4-7) transcripts detectable with the assay were also present on orthogonal reverse transcription PCR. Specific hotspot mutations in KIT, ABL1, and NPM1 detected with the assay showed 100% concordance with orthogonal testing. Lastly, several illustrative samples are included to highlight the assay's clinically relevant contributions to patient workup. CONCLUSION: Through its ability to simultaneously detect various gene rearrangements, aberrantly expressed transcripts, and hotspot mutations, this RNA-based NGS assay is a valuable tool for clinical laboratories to supplement other molecular and cytogenetic methods used in the diagnostic workup and in clinical research for patients with acute leukemia and myeloid disorders.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Gene Rearrangement , Transcription Factors/genetics , Nuclear Proteins/genetics , RNA , Nucleotides
3.
Blood ; 142(26): 2282-2295, 2023 12 28.
Article in English | MEDLINE | ID: mdl-37774374

ABSTRACT

ABSTRACT: The spatial anatomy of hematopoiesis in the bone marrow (BM) has been extensively studied in mice and other preclinical models, but technical challenges have precluded a commensurate exploration in humans. Institutional pathology archives contain thousands of paraffinized BM core biopsy tissue specimens, providing a rich resource for studying the intact human BM topography in a variety of physiologic states. Thus, we developed an end-to-end pipeline involving multiparameter whole tissue staining, in situ imaging at single-cell resolution, and artificial intelligence-based digital whole slide image analysis and then applied it to a cohort of disease-free samples to survey alterations in the hematopoietic topography associated with aging. Our data indicate heterogeneity in marrow adipose tissue (MAT) content within each age group and an inverse correlation between MAT content and proportions of early myeloid and erythroid precursors, irrespective of age. We identify consistent endosteal and perivascular positioning of hematopoietic stem and progenitor cells (HSPCs) with medullary localization of more differentiated elements and, importantly, uncover new evidence of aging-associated changes in cellular and vascular morphologies, microarchitectural alterations suggestive of foci with increased lymphocytes, and diminution of a potentially active megakaryocytic niche. Overall, our findings suggest that there is topographic remodeling of human hematopoiesis associated with aging. More generally, we demonstrate the potential to deeply unravel the spatial biology of normal and pathologic human BM states using intact archival tissue specimens.


Subject(s)
Artificial Intelligence , Hematopoietic Stem Cells , Humans , Mice , Animals , Hematopoietic Stem Cells/pathology , Bone Marrow/pathology , Hematopoiesis/physiology , Aging
4.
Surg Pathol Clin ; 16(2): 411-421, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37149366

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia and is a heterogeneous disease with variable patient outcomes. A multidisciplinary technical evaluation, including flow cytometry, immunohistochemistry, molecular and cytogenetic analyses, can comprehensively characterize a patient's leukemia at diagnosis, identify important prognostic biomarkers, and track measurable residual disease; all of which can impact patient management. This review highlights the key concepts, clinical significance, and main biomarkers detectable with each of these technical approaches; the contents are a helpful resource for medical practitioners involved in the workup and management of patients with CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphocytosis , Adult , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , B-Lymphocytes , Lymphocyte Count , Cytogenetic Analysis
5.
Proc Natl Acad Sci U S A ; 120(16): e2205786120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37058487

ABSTRACT

Stroke-induced cerebral microvascular dysfunction contributes to aggravation of neuronal injury and compromises the efficacy of current reperfusion therapies. Understanding the molecular alterations in cerebral microvessels in stroke will provide original opportunities for scientific investigation of novel therapeutic strategies. Toward this goal, using a recently optimized method which minimizes cell activation and preserves endothelial cell interactions and RNA integrity, we conducted a genome-wide transcriptomic analysis of cerebral microvessels in a mouse model of stroke and compared these transcriptomic alterations with the ones observed in human, nonfatal, brain stroke lesions. Results from these unbiased comparative analyses have revealed the common alterations in mouse stroke microvessels and human stroke lesions and identified shared molecular features associated with vascular disease (e.g., Serpine1/Plasminogen Activator Inhibitor-1, Hemoxygenase-1), endothelial activation (e.g., Angiopoietin-2), and alterations in sphingolipid metabolism and signaling (e.g., Sphigosine-1-Phosphate Receptor 2). Sphingolipid profiling of mouse cerebral microvessels validated the transcript data and revealed the enrichment of sphingomyelin and sphingoid species in the cerebral microvasculature compared to brain and the stroke-induced increase in ceramide species. In summary, our study has identified novel molecular alterations in several microvessel-enriched, translationally relevant, and druggable targets, which are potent modulators of endothelial function. Our comparative analyses have revealed the presence of molecular features associated with cerebral microvascular dysfunction in human chronic stroke lesions. The results shared here provide a detailed resource for therapeutic discovery of candidates for neurovascular protection in stroke and potentially, other pathologies exhibiting cerebral microvascular dysfunction.


Subject(s)
Stroke , Mice , Humans , Animals , Stroke/metabolism , Brain/metabolism , Endothelium/metabolism , Microvessels/pathology , Sphingolipids/metabolism , Blood-Brain Barrier/metabolism
6.
Am J Hematol ; 98(8): 1341-1342, 2023 08.
Article in English | MEDLINE | ID: mdl-36746647

ABSTRACT

69-year-old man with a history of diffuse large B-cell lymphoma (DLBCL) presented with severe acute hemolytic anemia 27 months after an autologous hematopoietic stem cell transplantation. Bone marrow aspirate revealed intracellular micro-organisms (arrows) located within the cytoplasm of red blood cells confirming the diagnosis of severe babesiosis.


Subject(s)
Anemia, Hemolytic , Hematopoietic Stem Cell Transplantation , Lymphoma, Large B-Cell, Diffuse , Male , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Anemia, Hemolytic/etiology , Anemia, Hemolytic/therapy , Lymphoma, Large B-Cell, Diffuse/therapy , Erythrocytes , Transplantation, Autologous
7.
Leuk Res ; 127: 107033, 2023 04.
Article in English | MEDLINE | ID: mdl-36774789

ABSTRACT

The presence of JAK2 exon 12 mutation was included by the 2016 World Health Organization (WHO) Classification as one of the major criteria for diagnosing polycythemia vera (PV). Few studies have evaluated the clinical presentation and bone marrow morphology of these patients and it is unclear if these patients fulfill the newly published criteria of 5th edition WHO or The International Consensus Classification (ICC) criteria for PV. Forty-three patients with JAK2 exon 12 mutations were identified from the files of 7 large academic institutions. Twenty patients had complete CBC and BM data at disease onset. Fourteen patients met the diagnostic criteria for PV and the remaining six patients were diagnosed as MPN-U. At diagnosis, 9/14 patients had normal WBC and platelet counts (isolated erythrocytosis/IE subset); while 5/14 had elevated WBC and/or platelets (polycythemic /P subset). We found that hemoglobin and hematocrit tended to be lower in the polycythemia group. Regardless of presentation (P vs IE), JAK2 deletion commonly occurred in amino acids 541-544 (62 %). MPN-U patients carried JAK2 exon 12 mutation, but did not fulfill the criteria for PV. Half of the patients had hemoglobin/hematocrit below the diagnostic threshold for PV, but showed increased red blood cell count with low mean corpuscular volume (56-60 fL). Three cases lacked evidence of bone marrow hypercellularity. In summary, the future diagnostic criteria for PV may require a modification to account for the variant CBC and BM findings in some patients with JAK2 exon 12 mutation.


Subject(s)
Myeloproliferative Disorders , Polycythemia Vera , Polycythemia , Humans , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Polycythemia Vera/diagnosis , Polycythemia Vera/genetics , Polycythemia Vera/pathology , Bone Marrow/pathology , Polycythemia/pathology , Janus Kinase 2/genetics , Mutation , Exons/genetics
8.
J Clin Invest ; 132(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36282572

ABSTRACT

Targeting lineage-defined transcriptional dependencies has emerged as an effective therapeutic strategy in cancer treatment. Through screening for molecular vulnerabilities of mantle cell lymphoma (MCL), we identified a set of transcription factors (TFs) including FOXO1, EBF1, PAX5, and IRF4 that are essential for MCL propagation. Integrated chromatin immunoprecipitation and sequencing (ChIP-Seq) with transcriptional network reconstruction analysis revealed FOXO1 as a master regulator that acts upstream in the regulatory TF hierarchy. FOXO1 is both necessary and sufficient to drive MCL lineage commitment through supporting the lineage-specific transcription programs. We further show that FOXO1, but not its close paralog FOXO3, can reprogram myeloid leukemia cells and induce B-lineage gene expression. Finally, we demonstrate that cpd10, a small molecule identified from an enriched FOXO1 inhibitor library, induces a robust cytotoxic response in MCL cells in vitro and suppresses MCL progression in vivo. Our findings establish FOXO1 inhibition as a therapeutic strategy targeting lineage-driven transcriptional addiction in MCL.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Adult , Lymphoma, Mantle-Cell/genetics , Gene Regulatory Networks , Forkhead Box Protein O1/genetics
9.
EJHaem ; 3(3): 1078-1079, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36051069
10.
Blood Adv ; 6(4): 1137-1142, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34551074

ABSTRACT

FIP1L1-RARA-a ssociated neoplasm is a very rare and aggressive disease, with only 3 previously reported cases in the literature. Here, we describe a 9-month-old boy who presented with a FIP1L1-RARA fusion-associated myelodysplastic/myeloproliferative neoplasm-like overlap syndrome, with similarities and distinct features to both acute promyelocytic leukemia and juvenile myelomonocytic leukemia. Using a combined approach of chemotherapy, differentiating agents, and allogeneic hematopoietic stem cell transplant (allo-HCT), this patient remains in remission 20 months after allo-HCT. To our knowledge, this is only the second published pediatric case involving this condition and the only case with a favorable long-term outcome. Given the aggressive disease described in the previously published case report, as well as the successful treatment course described, the combinatorial use of chemotherapy, differentiation therapy, and allo-HCT for treatment of FIP1L1-RARA fusion-associated myeloid neoplasms should be considered.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Promyelocytic, Acute , Myeloproliferative Disorders , Child , Humans , Infant , Male
11.
Front Oncol ; 11: 701318, 2021.
Article in English | MEDLINE | ID: mdl-34527579

ABSTRACT

BACKGROUND: NPM1 mutation status can influence prognosis and management in AML. Accordingly, clinical testing (i.e., RT-PCR, NGS and IHC) for mutant NPM1 is increasing in order to detect residual disease in AML, alongside flow cytometry (FC). However, the relationship of the results from RT-PCR to traditional NGS, IHC and FC is not widely known among many practitioners. Herein, we aim to: i) describe the performance of RT-PCR compared to traditional NGS and IHC for the detection of mutant NPM1 in clinical practice, and also compare it to FC, and ii) provide our observations regarding the advantages and disadvantages of each approach in order to inform future clinical testing algorithms. METHODS: Peripheral blood and bone marrow samples collected for clinical testing at variable time points during patient management were tested by quantitative, real-time, RT-PCR and results were compared to findings from a Myeloid NGS panel, mutant NPM1 IHC and FC. RESULTS: RT-PCR showed superior sensitivity compared to NGS, IHC and FC with the main challenge of NGS, IHC and FC being the ability to identify a low disease burden (<0.5% NCN by RT-PCR). Nevertheless, the positive predictive value of NGS, IHC and FC were each ≥ 80% indicating that positive results by those assays are typically associated with RT-PCR positivity. IHC, unlike bulk methods (RT-PCR, NGS and FC), is able provide information regarding cellular/architectural context of disease in biopsies. FC did not identify any NPM1-mutated residual disease not already detected by RT-PCR, NGS or IHC. CONCLUSION: Overall, our findings demonstrate that RT-PCR shows superior sensitivity compared to a traditional Myeloid NGS, suggesting the need for "deep-sequencing" NGS panels for NGS-based monitoring of residual disease in NPM1-mutant AML. IHC provides complementary cytomorphologic information to RT-PCR. Lastly, FC may not be necessary in the setting of post-therapy follow up for NPM1-mutated AML. Together, these findings can help inform future clinical testing algorithms.

12.
Clin Lab ; 66(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33337831

ABSTRACT

BACKGROUND: NPM1 mutations have prognostic significance in acute myeloid leukemia (AML) and monitoring mutant NPM1 levels during and after therapy has been described to predict relapse and survival. Despite the published significance of this molecular biomarker, routine monitoring for mutant NPM1 levels has not been widely adopted in academic clinical laboratories. Therefore, our objective was to validate a quantitative, reverse transcription-PCR assay for the detection of NPM1 Type A mutant transcripts for use in the clinical laboratory. METHODS: A quantitative, real-time, reverse-transcription PCR-based method for the detection of NPM1 Type A mutant transcripts was validated for use in routine clinical practice. Results from this assay were compared to results from orthogonal methods, including next generation sequencing and digital droplet PCR. RESULTS: This real-time, reverse-transcription PCR-based method is sensitive (limit of detection: 0.0150% NCN and reproducible (≤ 0.5 log10-fold variation). We summarize the rigorous validation results and share observations that will help other clinical laboratories that may wish to implement this testing. We show the superior sensitivity of this assay compared to other assays (e.g., 45 gene Myeloid Next Generation Sequencing panel) and present a representative case which highlights the assay's utility in the pathologic assessment of cases with borderline morphologic or flow cytometric findings. CONCLUSIONS: As molecular testing for residual disease in AML continues to expand, this sensitive and reproducible method will be an appropriate testing option for the detection of NPM1 Type A mutant transcripts in clinical practice.


Subject(s)
Leukemia, Myeloid, Acute , Real-Time Polymerase Chain Reaction , Humans , Laboratories , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , Nuclear Proteins/genetics , Nucleophosmin
13.
Curr Hematol Malig Rep ; 15(4): 350-359, 2020 08.
Article in English | MEDLINE | ID: mdl-32494951

ABSTRACT

PURPOSE OF REVIEW: Nucleophosmin (NPM1) mutations are encountered in myeloid neoplasia and are present in ~ 30% of de novo acute myeloid leukemia cases. This review summarizes features of mutant NPM1-related disease, with a particular emphasis on recent discoveries relevant to disease monitoring, prognostication, and therapeutic intervention. RECENT FINDINGS: Recent studies have shown that HOX/MEIS gene overexpression is central to the survival of NPM1-mutated cells. Two distinct classes of small molecule drugs, BH3 mimetics and menin-MLL interaction inhibitors, have demonstrated exquisite leukemic cell toxicity in preclinical AML models associated with HOX/MEIS overexpression, and the former of these has shown efficacy in older treatment-naïve NPM1-mutated AML patients. The results of ongoing clinical trials further investigating these compounds will be of particular importance and may alter the clinical management of patients with NPM1-mutated myeloid neoplasms. Significant scientific advancements over the last decade, including improved sequencing and disease monitoring techniques, have fostered a much deeper understanding of mutant NPM1 disease biology, prognostication, and opportunities for therapeutic intervention. These discoveries have led to the development of clinical assays that permit the detection and monitoring of mutant NPM1 and have paved the way for future investigation of targeted therapeutics using emerging cutting-edge techniques.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/genetics , Nuclear Proteins/genetics , Animals , Genetic Predisposition to Disease , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/therapy , Neoplasm, Residual , Nucleophosmin , Phenotype , Prognosis , Risk Factors
14.
J Hematop ; 12(2): 57-65, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31404445

ABSTRACT

BACKGROUND: Aggressive, mature B-cell lymphomas include Burkitt Lymphoma (BL), High Grade B Cell Lymphomas (HGBL) (eg, Double-Hit B cell lymphomas (HGBL-DH: HGBL with MYC and BCL2 and/or BCL6 translocations)), HGBL, Not Otherwise Specified (HGBL, NOS) and Diffuse Large B Cell Lymphoma (DLBCL). Overlapping morphologic and immunohistochemical features of these lymphomas pose diagnostic challenges in some cases, and better understanding of potential diagnostic biomarkers and possible therapeutic targets is needed. Sphingosine 1 Phosphate Receptors (S1PR1-5) are G-protein coupled receptors that bind S1P and influence migration and survival in multiple cell types, including lymphocytes. S1PRs are emerging as biomarkers in B cell biology and interaction between S1PR pathways and STAT3 or FOXP1 has been reported in DLBCL. AIM AND METHODS: Our aim was to extend the understanding of S1PR1, STAT3 and S1PR2, FOXP1 expression beyond DLBCL, into additional aggressive, mature B cell lymphomas using immunohistochemical expression analysis of human tissue samples. RESULTS: S1PR1 and S1PR2 showed different expression patterns in mantle zones and follicle centers in reactive lymphoid tissue. BL showed a unique expression pattern compared to HGBL and DLBCL. Additionally, S1PR1 and S1PR2 expression were typically mutually exclusive and were expressed in a low proportion of cases (frequently HGBL involving extranodal sites). FOXP1 was expressed in a high proportion of various case types and pSTAT3 was detected in a significant proportion of HGBL and DLBCL. CONCLUSIONS: These findings provide further evidence that S1PR1, pSTAT3, S1PR2 and FOXP1 play a role in a subset of aggressive, mature B cell lymphomas.

15.
J Mol Diagn ; 21(1): 13-15, 2019 01.
Article in English | MEDLINE | ID: mdl-30347269

ABSTRACT

This commentary highlights the article by Patel et al that reports a novel custom next-generation sequencing platform for fast detection of select genes in hematologic malignancies.


Subject(s)
Hematologic Neoplasms , Myeloproliferative Disorders , Genomics , High-Throughput Nucleotide Sequencing , Humans , Mutation
16.
Cell Rep ; 21(3): 784-797, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29045844

ABSTRACT

Gain-of-function Notch mutations are recurrent in mature small B cell lymphomas such as mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL), but the Notch target genes that contribute to B cell oncogenesis are largely unknown. We performed integrative analysis of Notch-regulated transcripts, genomic binding of Notch transcription complexes, and genome conformation data to identify direct Notch target genes in MCL cell lines. This B cell Notch regulome is largely controlled through Notch-bound distal enhancers and includes genes involved in B cell receptor and cytokine signaling and the oncogene MYC, which sustains proliferation of Notch-dependent MCL cell lines via a Notch-regulated lineage-restricted enhancer complex. Expression of direct Notch target genes is associated with Notch activity in an MCL xenograft model and in CLL lymph node biopsies. Our findings provide key insights into the role of Notch in MCL and other B cell malignancies and have important implications for therapeutic targeting of Notch-dependent oncogenic pathways.


Subject(s)
B-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Oncogenes , Receptors, Notch/metabolism , Signal Transduction , Animals , Biopsy , Cell Differentiation/genetics , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Gene Rearrangement , Humans , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Notch/genetics , Tumor Microenvironment , Xenograft Model Antitumor Assays
18.
Transl Oncol ; 10(3): 442-449, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28448960

ABSTRACT

Distinguishing synchronous and metachronous primary lung adenocarcinomas from adenocarcinomas with intrapulmonary metastasis is essential for optimal patient management. In this study, multiple lung adenocarcinomas occurring in the same patient were evaluated using comprehensive histopathologic evaluation supplemented with molecular analysis. The cohort included 18 patients with a total of 52 lung adenocarcinomas. Eleven patients had a new diagnosis of multiple adenocarcinomas in the same lobe (n=5) or different lobe (n=6). Seven patients had a history of lung cancer and developed multiple new tumors. The final diagnosis was made in resection specimens (n=49), fine needle aspiration (n=2), and biopsy (n=1). Adenocarcinomas were non-mucinous, and histopathologic comparison of tumors was performed. All tumors save for one were subjected to ALK gene rearrangement testing and targeted Next Generation Sequencing (NGS). Using clinical, radiologic, and morphologic features, a confident conclusion favoring synchronous/metachronous or metastatic disease was made in 65% of patients. Cases that proved challenging included ones with more than three tumors showing overlapping growth patterns and lacking a predominant lepidic component. Genomic signatures unique to each tumor were helpful in determining the relationship of multiple carcinomas in 72% of patients. Collectively, morphologic and genomic data proved to be of greater value and achieved a conclusive diagnosis in 94% of patients. Assessment of the genomic profiles of multiple lung adenocarcinomas complements the histological findings, enabling a more comprehensive assessment of synchronous, metachronous, and metastatic lesions in most patients, thereby improving staging accuracy. Targeted NGS can identify genetic alterations with therapeutic implications.

19.
J Am Med Inform Assoc ; 24(3): 513-519, 2017 May 01.
Article in English | MEDLINE | ID: mdl-27789569

ABSTRACT

OBJECTIVE: This paper describes the Precision Medicine Knowledge Base (PMKB; https://pmkb.weill.cornell.edu ), an interactive online application for collaborative editing, maintenance, and sharing of structured clinical-grade cancer mutation interpretations. MATERIALS AND METHODS: PMKB was built using the Ruby on Rails Web application framework. Leveraging existing standards such as the Human Genome Variation Society variant description format, we implemented a data model that links variants to tumor-specific and tissue-specific interpretations. Key features of PMKB include support for all major variant types, standardized authentication, distinct user roles including high-level approvers, and detailed activity history. A REpresentational State Transfer (REST) application-programming interface (API) was implemented to query the PMKB programmatically. RESULTS: At the time of writing, PMKB contains 457 variant descriptions with 281 clinical-grade interpretations. The EGFR, BRAF, KRAS, and KIT genes are associated with the largest numbers of interpretable variants. PMKB's interpretations have been used in over 1500 AmpliSeq tests and 750 whole-exome sequencing tests. The interpretations are accessed either directly via the Web interface or programmatically via the existing API. DISCUSSION: An accurate and up-to-date knowledge base of genomic alterations of clinical significance is critical to the success of precision medicine programs. The open-access, programmatically accessible PMKB represents an important attempt at creating such a resource in the field of oncology. CONCLUSION: The PMKB was designed to help collect and maintain clinical-grade mutation interpretations and facilitate reporting for clinical cancer genomic testing. The PMKB was also designed to enable the creation of clinical cancer genomics automated reporting pipelines via an API.


Subject(s)
Databases, Genetic , Knowledge Bases , Neoplasms/genetics , Precision Medicine , Genomics , Humans , Online Systems , User-Computer Interface
20.
Surg Pathol Clin ; 9(3): 489-521, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27523974

ABSTRACT

Lymphoid neoplasms show great diversity in morphology, immunophenotypic profile, and postulated cells of origin, which also reflects the variety of genetic alterations within this group of tumors. This review discusses many of the currently known genetic alterations in selected mature B-cell and T-cell lymphoid neoplasms, and their significance as diagnostic, prognostic, and therapeutic markers. Given the rapidly increasing number of genetic alterations that have been described in this group of tumors, and that the clinical significance of many is still being studied, this is not an entirely exhaustive review of all of the genetic alterations that have been reported.


Subject(s)
Biomarkers, Tumor , Leukemia, Lymphoid/diagnosis , Leukemia, Lymphoid/pathology , Lymphoma/diagnosis , Lymphoma/pathology , Pathology, Molecular , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphoid/genetics , Lymphoma/genetics , Mutation/genetics , Predictive Value of Tests , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...