Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 9: 2315, 2018.
Article in English | MEDLINE | ID: mdl-30538652

ABSTRACT

Decision-making is an essential capability for success in team sport athletes. Good decision-making is underpinned by perceptual-cognitive skills that allow athletes to assess the environment and choose the correct choice from a number of alternatives. Previous research has demonstrated that decision-making can be trained "off-line" by exposing athletes to gameplay scenarios and having them make decisions based on the information presented to them. These scenarios are typically presented on television monitors or using life-size projections but recent advances in immersive video capabilities provide opportunities to improve the fidelity of training by presenting a realistic, 360° view of the competition environment. The purpose of this study was to assess the effectiveness of immersive video training and whether training would improve decision-making performance in elite, youth basketball players (male and female). A training group completed 10 or 12 immersive video (360° video presented in a head-mounted display) training sessions in which they viewed and responded to gameplay scenarios across 3-weeks while the control group only participated in their usual training routine. Performance was assessed on an immersive video test and during small-sided games (SSG). The male training group had a large, non-significant improvement on immersive test score (+4.0 points) and in the SSG (+5.8 points) compared to the male control group (+0.3 points and +1.0 points, respectively). While both the female control group (+9.7 points) and training group (7.4 points) had large improvements in the immersive training test, only the female control improved their performance in the SSG (+6.9 points). Despite the mixed findings, there may be benefit for using immersive video for training decision-making skill in team sports. The implications of these findings (e.g., gender of the actors used to create stimuli, variety of scenarios presented) and the limitations of the experiment are discussed.

2.
Int J Sports Physiol Perform ; 8(6): 623-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23479394

ABSTRACT

UNLABELLED: Competition-specific conditioning for tournament basketball games is challenging, as the demands of tournament formats are not well characterized. PURPOSE: To compare the physical, physiological, and tactical demands of seasonal and tournament basketball competition and determine the pattern of changes within an international tournament. METHODS: Eight elite junior male basketball players (age 17.8 ± 0.2 y, height 1.93 ± 0.07 m, mass 85 ± 3 kg; mean ± SD) were monitored in 6 seasonal games played over 4 mo in an Australian second-division national league and in 7 games of an international under-18 tournament played over 8 days. Movement patterns and tactical elements were coded from video and heart rates recorded by telemetry. RESULTS: The frequency of running, sprinting, and shuffling movements in seasonal games was higher than in tournament games by 8-15% (99% confidence limits ± ~8%). Within the tournament, jogging and low- to medium-intensity shuffling decreased by 15-20% (± ~14%) over the 7 games, while running, sprinting, and high-intensity shuffling increased 11-81% (± ~25%). There were unclear differences in mean and peak heart rates. The total number of possessions was higher in seasonal than in tournament games by 8% (± 10%). CONCLUSIONS: Coaches should consider a stronger emphasis on strength and power training in their conditioning programs to account for the higher activity of seasonal games. For tournament competition, strategies that build a sufficient aerobic capacity and neuromuscular resilience to maintain high-intensity movements need to be employed. A focus on half-court tactics accounts for the lower number of possessions in tournaments.


Subject(s)
Athletic Performance/physiology , Basketball/physiology , Competitive Behavior/physiology , Physical Exertion/physiology , Adolescent , Heart Rate/physiology , Humans , Male
3.
J Sports Sci ; 30(14): 1463-71, 2012.
Article in English | MEDLINE | ID: mdl-22928779

ABSTRACT

Differences in physiological, physical, and technical demands of small-sided basketball games related to the number of players, court size, and work-to-rest ratios are not well characterised. A controlled trial was conducted to compare the influence of number of players (2v2/4v4), court size (half/full court) and work-to-rest ratios (4x2.5 min/2x5 min) on the demands of small-sided games. Sixteen elite male and female junior players (aged 15-19 years) completed eight variations of a small-sided game in randomised order over a six-week period. Heart rate responses and rating of perceived exertion (RPE) were measured to assess the physiological load. Movement patterns and technical elements were assessed by video analysis. There were ∼60% more technical elements in 2v2 and ∼20% more in half court games. Heart rate (86 ± 4% & 83 ± 5% of maximum; mean ± SD) and RPE (8 ± 2 & 6 ± 2; scale 1-10) were moderately higher in 2v2 than 4v4 small-sided games, respectively. The 2v2 format elicited substantially more sprints (36 ±12%; mean ±90% confidence limits) and high intensity shuffling (75 ±17%) than 4v4. Full court games required substantially more jogging (9 ±6%) compared to half court games. Fewer players in small-sided basketball games substantially increases the technical, physiological and physical demands.


Subject(s)
Athletic Performance/physiology , Basketball/physiology , Heart Rate , Physical Exertion/physiology , Psychomotor Performance/physiology , Rest/physiology , Running/physiology , Adolescent , Adult , Female , Humans , Male , Movement , Physical Fitness , Task Performance and Analysis , Young Adult
4.
J Strength Cond Res ; 26(10): 2677-84, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22105056

ABSTRACT

Junior basketball athletes require a well-designed resistance training program to improve their physical development. Lack of expert supervision and resistance training in junior development pathways may be overcome by implementing an online video-based program. The aim of this study was to compare the magnitude of improvement (change) in physical performance and strength and functional movement patterns of junior basketball athletes using either a fully supervised or an online video-based resistance training program. Thirty-eight junior basketball athletes (males, n = 17; age, 14 ± 1 year; height, 1.79 ± 0.10 m; mass, 67 ± 12 kg; females, n = 21; age, 15 ± 1 year; height, 1.70 ± 0.07 m; mass, 62 ± 8 kg) were randomly assigned into a supervised resistance training group (SG, n = 13), video training group (VG, n = 13) or control group (CG, n = 12) and participated in a 6-week controlled experimental trial. Pre- and posttesting included measures of physical performance (20-m sprint, step-in vertical jump, agility, sit and reach, line drill, and Yo-Yo intermittent recovery level 1), strength (15 s push-up and pull-up), and functional movement screening (FMS). Both SG and VG achieved 3-5% ± 2-4% (mean ± 90% confidence limits) greater improvements in several physical performance measures (vertical jump height, 20-m sprint time, and Yo-Yo endurance performance) and a 28 ± 21% greater improvement in push-up strength compared with the CG. The SG attained substantially larger gains in FMS scores over both the VG (12 ± 10%) and CG (13 ± 8%). Video-based training appears to be a viable option to improve physical performance and strength in junior basketball athletes. Qualified supervision is recommended to improve functional movement patterns in junior athletes.


Subject(s)
Athletic Performance/physiology , Basketball/physiology , Resistance Training , Video Recording , Adolescent , Athletes , Exercise Test , Female , Humans , Male , Muscle Strength/physiology , Physical Fitness/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...