Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(10): 2689-2704, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38597367

ABSTRACT

Nano-dispersed cerium dioxide is promising for use in medicine due to its unique physicochemical properties, including low toxicity, the safety of in vivo usage, active participation in different redox processes occurring in living cells, and its regenerative potential, manifested in the ability of CeO2 to participate repeatedly in redox reactions. In this work, we examined the biological activity of cerium dioxide nanoparticles (CeO2 NPs) synthesized by precipitation in mixed water/alcohol solutions at a constant pH of 9. This synthesis method allowed controlling the size and Ce3+/Ce4+ proportion on the surface of NPs, changing the synthesis conditions and obtaining highly stable suspensions of "naked" CeO2 NPs. Changes in the surface properties upon contact of CeO2 NPs with protein-rich media, e.g., bovine serum albumin and DMEM cell culture medium supplemented with 10% fetal bovine serum, the characteristics of nanoparticle uptake by mouse aortic endothelial cells and the antioxidant activity of the nanoparticles of different sizes were investigated by various state-of-the-art analytical methods.


Subject(s)
Cerium , Nanoparticles , Particle Size , Surface Properties , Cerium/chemistry , Cerium/pharmacology , Animals , Mice , Nanoparticles/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Endothelial Cells/drug effects , Serum Albumin, Bovine/chemistry , Cattle
2.
Heliyon ; 9(7): e18414, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539240

ABSTRACT

Chemotherapy can often cause a variety of side effects including bone marrow (BM) suppression, termed as myelosuppression. Accordingly, facile and effective management of chemotherapy-induced myelosuppression is currently a pivotal task for experimental pathologists and oncologists. Here, we chose to use activated carbon (AC) with an extensive surface area for studying its possible protective effectiveness with respect to BM in doxorubicin (DOX)-treated rats. Spherical AC with an extended surface area up to 4490 m2/g was prepared for per os (p/o) delivery, whereas for intraperitoneal (i/p) delivery we used the powdered form of AC that was derived from the aforementioned spherical AC. During the monthly treatment of animals with AC and DOX these two components were delivered alternately (not in the same day). After treatment, BM cells were isolated from femurs of sacrificed animals, stained with acridine orange (AO) and analyzed by flow cytometry. Regardless of the route of AC delivery (p/o or i/p), apparent myeloprotection with a possible regenerative effect was observed in animals that received DOX, as evidenced by recovery of the populations of total nucleated cells (TNC) and polychromatic (immature) erythrocytes accompanied by a considerable reduction of the number of apoptotic/dead cells among TNC (≤2.0%). Moreover, as a result of AC administrations, there was a significant increase of AO green and far-red fluorescence intensities in the population of TNC, which is suggestive of the ongoing quantitative and conformational changes in DNA and RNA associated with cell recovery and proliferation. Thus, AC preparations under the present experimental conditions can effectively tackle DOX-induced myelosuppression via mechanisms not necessarily associated with adsorptive detoxification.

3.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36500853

ABSTRACT

Magnetic nanoparticles (MNPs) were "green" synthesized from a FeCl3/FeSO4/CoCl2 mixture using ethanolic extracts of Artemisia tilesii Ledeb 'hairy' roots. The effect of chemical composition and reducing power of ethanolic extracts on the morphology, size destribution and other features of obtained MNPs was evaluated. Depending on the extract properties, nanosized magnetic materials of spherical (8-11 nm), nanorod-like (15-24 nm) and cubic (14-24 nm) shapes were obtained via self-assembly. Microspherical MNPs composed of nanoclusters were observed when using extract of the control root line in the synthesis. Polyhedral magnetic nanoparticles with an average size of ~30 nm were formed using 'hairy' root ethanolic extract without any additive. Studied samples manifested excellent magnetic characteristics. Field-dependent magnetic measurements of most MNPs demonstrated a saturation magnetization of 42.0-72.9 emu/g with negligible coercivity (∼0.02-0.29 emu/g), indicating superparamagnetic behaviour only for solids with a magnetite phase. The synthesized MNPs were minimally aggregated and well-dispersed in aqueous medium, probably due to their stabilization by bioactive compounds in the initial extract. The nanoparticles were tested for magnetic solid-phase extraction of copper (Cu), cadmium (Cd) and arsenic (As) pollutants in aqueous solution, followed by ICP-OES analysis. The magnetic oxides, mainly magnetite, showed high adsorption capacity and effectively removed arsenic ions at pH 6.7. The maximum adsorption capacity was ~150 mg/g for As(III, V) on the selected MNPs with cubic morphology, which is higher than that of previously reported adsorbents. The best adsorption was achieved using Fe3O4-based nanomaterials with low crystallinity, non-spherical form and a large number of surface-localized organic molecules. The phytotoxicity of the obtained MNPs was estimated in vitro using lettuce and chicory as model plants. The obtained MNPs did not exhibit inhibitory activity. This work provides novel insights on the morphology of "green" synthesized magnetic nanoparticles that can be used for applications in adsorption technologies.

4.
RSC Adv ; 11(43): 26974-26987, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-35480010

ABSTRACT

The "green" synthesis of magnetite and cobalt ferrite nanoparticles (Fe3O4-NPs and CoFe2O4-NPs) using extracts of Artemisia annua L "hairy" roots was proposed. In particular, the effect and role of important variables in the 'green' synthesis process, including the metal-salt ratio, various counter ions in the reaction mixture, concentration of total flavonoids and reducing power of the extract, were evaluated. The morphology and size distribution of the magnetic nanoparticles (MNPs) depended on the metal oxidation state and ratio of Fe(iii) : Fe(ii) in the initial reaction mixture. MNPs obtained from divalent metal salts in the reaction mixture were non-uniform in size with high aggregation level. Samples obtained by the FeCl3/FeSO4 mixture with a ratio of Fe(iii) : Fe(ii) = 1 : 2 showed an irregular shape of the nanoparticles and high aggregation level. MNPs obtained by the FeCl3/FeSO4/CoCl2 mixture showed a regular shape with slight aggregation, and were in the nanosize range (10-17 nm). Thus, this mixture as a metal-precursor was used for MNP biosynthesis in the subsequent experiments. The XRD data showed that the magnetic specimens contained mainly spinel type phase. The data of EDX and XPS analysis indicated that the product of the "green" synthesis was magnetite with some impurities, owing to the obtained ratio of Fe : O being similar to the theoretical atomic ratio of magnetite (3 : 4). The Fe3O4-NP samples were superparamagnetic with high magnetization (until 68 emu g-1). The Co-containing MNPs demonstrated low ferromagnetic properties. The MNPs with pure magnetite phase, very good magnetization and uniform size distribution (ca. 12-14 nm) were prepared by the "hairy" root extract characterized by the highest amount of total flavonoids. According to the FTIR data, the synthesized Fe3O4-NPs had a core-shell like structure, in which the core was composed of Fe3O4, and the shell was formed by bioactive molecules. The presence of several organic compounds (such as flavonoids or carboxylic acids) plays a key role in the suppression of Fe3O4-NP aggregation without addition of a stabilizing agents. Synthesized Fe3O4-NP samples effectively removed Cu(ii) and Cd(ii) with the maximum adsorption capacity, reaching 29.9 mg g-1 and 33.5 mg g-1, respectively. It is probable that the presence of organic components in extracts plays an important role in the adsorption properties of biosynthesised MNPs. The obtained MNPs were successfully applied to the removal of heavy metal ions in the environmental water samples. Fe3O4-NPs also negatively affected plant growth in the case of using "hairy" roots as a test model, and the greatest inhibitory activity (99.56 wt%) was possessed by MNPs with high magnetic properties.

5.
RSC Adv ; 10(65): 39434-39446, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-35515379

ABSTRACT

The research was focused on the synthesis of silver nanoparticles (AgNPs) using extracts from the "hairy" root cultures of Artemisia tilesii Ledeb. and Artemisia annua L. The effect of operational parameters such as type of solvent, temperature of extraction, flavonoids concentration, and reducing power of the wormwood "hairy" root extracts on the particle size and yield of the resultant nanoparticles is reported for the first time. From the studied solvents, a water-ethanol mixture with a concentration of 70 vol% was found to be the best for the extraction of flavonoids from all "hairy" root cultures. The total flavonoid contents in A. annua and A. tilesii "hairy" root extracts were up to 80.0 ± 0.9 and 108 ± 4.4 mg RuE per g DW, respectively. Identification of flavonoids was confirmed by UPLC-ESI-UHR-Qq-TOF-MS analysis. Luteolin-7-ß-d-glucopyranosid, isorhamnetin 3-O-glucoside, baicalein-7-O-glucuronide, apigenin-7-O-glucoside, quercetin, sitosterol, caffeoylquinic, galic, chlorogenic and caffeic acids were founded in the extracts. These extracts demonstrated the high reducing activities. Spherical, oval and triangular nanoparticles with effective sizes of 5-100 nm were observed. The TEM data revealed great differences in the shapes of NPs, obtained from the extracts from different root clones. The clustered and irregular NPs were found in the case of using ethanol extracts, mostly aggregated and having the size of 10-50 nm. The sizes of AgNPs decreased to 10-30 nm in the case of using aqueous extracts obtained at 80 °C. Biosynthesized AgNPs showed surface plasmon resonance in the range of 400-450 nm. The antimicrobial activity of the as-produced AgNPs was studied by disc diffusion method on Gram-positive (Staphylococcus aureus ATCC 25923 (F-49)), Gram-negative (Pseudomonas aeruginosa ATCC 27853 (F-51), Escherichia coli ATCC 25922 (F-50)) and Candida albicans ATCC 88-653 strains. It was found that the nanoparticles in some cases possessed the greater ability to inhibit microorganism growth compared to 1 mM AgNO3 solution. The colloidal solutions of the obtained AgNPs were stable in the dark for 12 months at room temperature. Thus, the A. annua and A. tilesii "hairy" root extracts can be used for obtaining of bioactive AgNPs.

6.
Micron ; 106: 42-47, 2018 03.
Article in English | MEDLINE | ID: mdl-29310045

ABSTRACT

In extracorporeal blood purification, such as hemoperfusion, activated carbon (activated charcoal) beads are commonly used as an adsorbent, but their judgment in terms of extent of microparticle release is of great importance since the microparticles may represent the risk of entering the bloodstream. To quantitatively assess the release of carbon microparticles (CMPs) in the samples of the aqueous perfusion medium, in which the beads have been perfused, the calibration procedure with different concentrations of CMPs is likely to be needed. For this purpose, carbon beads were mechanically crushed to a fine powder, whose microparticles (<10 µm) were then serially diluted in the aqueous medium within the wide range of concentrations (0.2-100 µg/ml). To test these concentrations of CMPs, the micro-aliquots of each dilution of suspended CMPs were dried on a surface of hydrophobic membrane and at the optical magnification of 20× the dry residues were than analyzed by measuring the sum of densities. This simple and affordable technique was shown to be considerably more sensitive than spectrophotometry of the aqueous suspensions of CMPs.

7.
J Gravit Physiol ; 11(2): P205-6, 2004 Jul.
Article in English | MEDLINE | ID: mdl-16240509

ABSTRACT

The specific properties and characteristics of the H+-ATPase, lipid and fatty acids content and composition in plasma membrane vesicles isolated from pea seedlings grown under clinorotation (2 rev/min) and stationary conditions were studied.


Subject(s)
Cell Membrane/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Proton-Translocating ATPases/metabolism , Weightlessness Simulation , Fatty Acids, Unsaturated/metabolism , Pisum sativum/growth & development , Pisum sativum/metabolism , Pisum sativum/ultrastructure , Plant Proteins/metabolism , Plant Roots/ultrastructure , Rotation , Seedlings
SELECTION OF CITATIONS
SEARCH DETAIL
...