Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 6(5): 182233, 2019 May.
Article in English | MEDLINE | ID: mdl-31218045

ABSTRACT

Heterogeneous continuous transformation of methyl levulinate (ML) and ethyl levulinate (EL) to γ-valerolactone (GVL), as a promising C5-platform molecule was studied at 100°C. It was proved that the H-Cube® continuous hydrogenation system equipped with 5% Ru/C CatCart® is suitable for the reduction of both levulinate esters. While excellent conversion rates (greater than 99.9%) of ML and EL could be achieved in water and corresponding alcohols, the selectivities of GVL were primarily affected by the solvent used. In water, 100% conversion and ca 50% selectivity that represent ca 0.45 molGVL gmetal -1 h-1 productivity towards GVL, were obtained under 100 bar of total system pressure. The application of alcohols as a solvent, which maintained high conversion rates up to 1 ml min-1 flow rate, resulted in lower productivities (less than 0.2 molGVL gmetal -1 h-1) of GVL. Therefore, from a synthesis point of view, the corresponding 4-hydroxyvalerate esters could be obtained even at a higher reaction rate. The addition of sulfonated triphenylphosphine ligand (TPPTS) allowed reduction of the system pressure and resulted in the higher selectivity towards GVL.

2.
Chirality ; 19(6): 430-3, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17345564

ABSTRACT

Racemic N-methylamphetamine (rac-MA) was resolved with 2R,3R-tartaric acid (TA) and its derivatives (O,O'-dibenzoyl-(2R,3R)-tartaric acid monohydrate (DBTA) and O,O'-di-p-toluoyl-(2R,3R)-tartaric acid (DPTTA)), individually and using them in different combinations. After partial diastereomeric salt formation, the free enantiomers were extracted by supercritical fluid extraction using carbon dioxide as solvent. DBTA and DPTTA are efficient resolving agents for rac-MA, the best chiral separation being obtained at a molar ratio of 0.25 resolving agent to racemic compound for both resolving agents (ee(E) = 82.5% and ee(E) = 57.9%, respectively). Compared with the two other acids, TA is practically unsuitable for enantiomer separation (ee(E) < 5%). Applying a mixture of one individually active and one ineffective acid in half the equivalent molar ratio, when the acids are in 1:1 ratio in the mixture, the resolution efficiency values obtained exceeded those obtained by using the components individually. Decreasing the molar ratio of resolving agent mixture to 0.25, at which the individual resolving agents give the best chiral separation, the obtained resolution efficiency values did not differ significantly from those expected. The outcome of the resolution process depended only on the amount of the individually active resolving agents in the mixture.

3.
Chirality ; 15(9): 783-6, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14556215

ABSTRACT

The very first application of supercritical fluid extraction (SFE) on enantioseparation of alcohols is discussed. Resolution of three chiral alcohols (trans-2-chloro-cyclohexanol, trans-2-bromo-cyclohexanol, and trans-2-iodo-cyclohexanol) were performed by partial complexation with (-)-O,O'-dibenzoyl-(2R,3R)-tartaric acid monohydrate (DBTA). DBTA formed diastereomeric complexes with all S,S-enantiomers stable enough to extract the unreacted alcohols with supercritical carbon dioxide. Resolution efficiency increased with the size of halogen substituents, and by the proper selection of molar ratio, pure (-)-R,R-trans-2-iodo-cyclohexanol (ee > 99%, yield: 39%) or (+)-S,S-trans-2-iodo-cyclohexanol (ee = 98%, yield: 8%) were prepared in one process step. Achieved resolution efficiency values were much higher in all resolution procedures than in any other known enantioseparation of these racemic compounds. The developed method offers an environmentally friendly, efficient alternative of currently applied resolution processes, also on a preparative scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...