Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 25(22): 27370-27385, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092211

ABSTRACT

We use terahertz transmission through limestone sedimentary rock samples to assess the macro and micro porosity. We exploit the notable water absorption in the terahertz spectrum to interact with the pores that are two orders of magnitude smaller (<1µm) than the terahertz wavelength. Terahertz water sensitivity provides us with the dehydration profile of the rock samples. The results show that there is a linear correlation between such a profile and the ratio of micro to macro porosity of the rock. Furthermore, this study estimates the absolute value of total porosity based on optical diffusion theory. We compare our results with that of mercury injection capillary pressure as a benchmark to confirm our analytic framework. The porosimetry method presented here sets a foundation for a new generation of less invasive porosimetry methods with higher penetration depth based on lower frequency (f<10THz) scattering and absorption. The technique has applications in geological studies and in other industries without the need for hazardous mercury or ionizing radiation.

2.
ACS Appl Mater Interfaces ; 9(15): 13111-13120, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28291944

ABSTRACT

Environmental tracing applications require materials that can be detected in complex fluids composed of multiple phases and contaminants. Moreover, large libraries of tracers are necessary in order to mitigate memory effects and to deploy multiple tracers simultaneously in complex oil fields. Herein, we disclose a novel approach based on the thermal decomposition of polymeric nanoparticles comprised of styrenic and methacrylic monomers. Polymeric nanoparticles derived from these monomers cleanly decompose into their constituent monomers at elevated temperatures, thereby maximizing atom economy wherein the entire nanoparticle mass contributes to the generation of detectable units. A total of ten unique single monomer particles and three dual-monomer particles were synthesized using semicontinuous monomer starved addition polymerization. The pyrolysis gas chromatography-flame ionization detection/mass spectrometry (GC-FID/MS) behavior of these particles was studied using high-pressure mass spectrometry. The programmable nature of our methodology permits simultaneous removal of contaminants and subsequent identification and quantification in a single analytical step.

SELECTION OF CITATIONS
SEARCH DETAIL
...