Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioengineered ; 14(1): 2244235, 2023 12.
Article in English | MEDLINE | ID: mdl-37598369

ABSTRACT

Antibody-drug conjugates (ADCs) can improve therapeutic indices compared to plain monoclonal antibodies (mAbs). However, ADC synthesis is complex because the components are produced separately in CHO cells (mAb) and often by chemical synthesis (drug). They are individually purified, coupled, and then the ADC is purified, increasing production costs compared to regular mAbs. In contrast, it is easier to produce recombinant fusion proteins consisting of an antibody derivative, linker and proteinaceous toxin, i.e. a recombinant immunotoxin (RIT). Plants are capable of the post-translational modifications needed for functional antibodies and can also express active protein toxins such as the recombinant mistletoe lectin viscumin, which is not possible in prokaryotes and mammalian cells respectively. Here, we used Nicotiana benthamiana and N. tabacum plants as well as tobacco BY-2 cell-based plant cell packs (PCPs) to produce effective RITs targeting CD64 as required for the treatment of myelomonocytic leukemia. We compared RITs with different subcellular targeting signals, linkers, and proteinaceous toxins. The accumulation of selected candidates was improved to ~ 40 mg kg-1 wet biomass using a design of experiments approach, and corresponding proteins were isolated with a purity of ~ 80% using an optimized affinity chromatography method with an overall yield of ~ 84%. One anti-CD64 targeted viscumin-based drug candidate was characterized in terms of storage stability and cytotoxicity test in vitro using human myelomonocytic leukemia cell lines. We identified bottlenecks in the plant-based expression platform that require further improvement and assessed critical process parameters that should be considered during process development for plant-made RITs.


Toxin type and domain sequence affect accumulation of recombinant immunotoxins.Transient expression in plant cell packs and intact plants correlates well.IC50 values of toxicity correlate with the cell surface receptor concentration.


Subject(s)
Immunotoxins , Leukemia , Animals , Humans , Cricetinae , Immunotoxins/genetics , Immunotoxins/pharmacology , Cricetulus , Plant Cells , Nicotiana/genetics , Antibodies, Monoclonal/genetics , CHO Cells
2.
BMC Biotechnol ; 23(1): 14, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286972

ABSTRACT

Large-scale transient expression of recombinant proteins in plants is increasingly used and requires the multi-liter cultivation of Agrobacterium tumefaciens transformed with an expression vector, which is often cloned in Escherichia coli first. Depending on the promoter, unintentional activity can occur in both bacteria, which could pose a safety risk to the environment and operators if the protein is toxic. To assess the risk associated with transient expression, we first tested expression vectors containing the CaMV35S promoter known to be active in plants and bacteria, along with controls to measure the accumulation of the corresponding recombinant proteins. We found that, in both bacteria, even the stable model protein DsRed accumulated at levels near the detection limit of the sandwich ELISA (3.8 µg L-1). Higher levels were detected in short cultivations (< 12 h) but never exceeded 10 µg L-1. We determined the abundance of A. tumefaciens throughout the process, including infiltration. We detected few bacteria in the clarified extract and found none after blanching. Finally, we combined protein accumulation and bacterial abundance data with the known effects of toxic proteins to estimate critical exposures for operators. We found that unintended toxin production in bacteria is negligible. Furthermore, the intravenous uptake of multiple milliliters of fermentation broth or infiltration suspension would be required to reach acute toxicity even when handling the most toxic products (LD50 ~ 1 ng kg-1). The unintentional uptake of such quantities is unlikely and we therefore regard transient expression as safe in terms of the bacterial handling procedure.


Subject(s)
Agrobacterium tumefaciens , Agrobacterium tumefaciens/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Promoter Regions, Genetic , Fermentation , Risk Assessment , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
3.
Biotechnol Bioeng ; 120(4): 1038-1054, 2023 04.
Article in English | MEDLINE | ID: mdl-36539373

ABSTRACT

Nanoparticles are used as carriers for the delivery of drugs and imaging agents. Proteins are safer than synthetic nanocarriers due to their greater biocompatibility and the absence of toxic degradation products. In this context, ferritin has the additional benefit of inherently targeting the membrane receptor transferrin 1, which is overexpressed by most cancer cells. Furthermore, this self-assembling multimeric protein can be loaded with more than 2000 iron atoms, as well as drugs, contrast agents, and other cargos. However, recombinant ferritin currently costs ~3.5 million € g-1 , presumably because the limited number of producers cannot meet demand, making it generally unaffordable as a nanocarrier. Because plants can produce proteins at very-large-scale, we developed a simple, proof-of-concept process for the production of the human ferritin heavy chain by transient expression in Nicotiana benthamiana. We optimized the protein yields by screening different compartments and 5'-untranslated regions in PCPs, and selected the best-performing construct for production in differentiated plants. We then established a rapid and scalable purification protocol by combining pH and heat treatment before extraction, followed by an ultrafiltration/diafiltration size-based separation process. The optimized process achieved ferritin levels of ~40 mg kg-1 fresh biomass although depth filtration limited product recovery to ~7%. The purity of the recombinant product was >90% at costs ~3% of the current sales price. Our method therefore allows the production of affordable ferritin heavy chain as a carrier for therapeutic and diagnostic agents, which is suitable for further stability and functionality testing in vitro and in vivo.


Subject(s)
Apoferritins , Neoplasms , Humans , Neoplasms/drug therapy , Ferritins/genetics , Iron , Drug Delivery Systems
4.
Front Plant Sci ; 10: 1245, 2019.
Article in English | MEDLINE | ID: mdl-31649707

ABSTRACT

Transgenic plants have the potential to produce recombinant proteins on an agricultural scale, with yields of several tons per year. The cost-effectiveness of transgenic plants increases if simple cultivation facilities such as greenhouses can be used for production. In such a setting, we expressed a novel affinity ligand based on the fluorescent protein DsRed, which we used as a carrier for the linear epitope ELDKWA from the HIV-neutralizing antibody 2F5. The DsRed-2F5-epitope (DFE) fusion protein was produced in 12 consecutive batches of transgenic tobacco (Nicotiana tabacum) plants over the course of 2 years and was purified using a combination of blanching and immobilized metal-ion affinity chromatography (IMAC). The average purity after IMAC was 57 ± 26% (n = 24) in terms of total soluble protein, but the average yield of pure DFE (12 mg kg-1) showed substantial variation (± 97 mg kg-1, n = 24) which correlated with seasonal changes. Specifically, we found that temperature peaks (>28°C) and intense illuminance (>45 klx h-1) were associated with lower DFE yields after purification, reflecting the loss of the epitope-containing C-terminus in up to 90% of the product. Whereas the weather factors were of limited use to predict product yields of individual harvests conducted for each batch (spaced by 1 week), the average batch yields were well approximated by simple linear regression models using two independent variables for prediction (illuminance and plant age). Interestingly, accumulation levels determined by fluorescence analysis were not affected by weather conditions but positively correlated with plant age, suggesting that the product was still expressed at high levels, but the extreme conditions affected its stability, albeit still preserving the fluorophore function. The efficient production of intact recombinant proteins in plants may therefore require adequate climate control and shading in greenhouses or even cultivation in fully controlled indoor farms.

5.
J Vis Exp ; (150)2019 08 16.
Article in English | MEDLINE | ID: mdl-31475984

ABSTRACT

The purification of monoclonal antibodies (mAbs) is commonly achieved by Protein A affinity chromatography, which can account for up to 25% of the overall process costs. Alternative, cost-effective capture steps are therefore valuable for industrial-scale manufacturing, where large quantities of a single mAb are produced. Here we present a method for the immobilization of a DsRed-based epitope ligand to a cross-linked agarose resin allowing the selective capture of the HIV-neutralizing antibody 2F5 from crude plant extracts without using Protein A. The linear epitope ELDKWA was first genetically fused to the fluorescent protein DsRed and the fusion protein was expressed in transgenic tobacco (Nicotiana tabacum) plants before purification by immobilized metal-ion affinity chromatography. Furthermore, a method based on activated cross-linked agarose was optimized for high ligand density, efficient coupling and low costs. The pH and buffer composition and the soluble ligand concentration were the most important parameters during the coupling procedure, which was improved using a design-of-experiments approach. The resulting affinity resin was tested for its ability to selectively bind the target mAb in a crude plant extract and the elution buffer was optimized for high mAb recovery, product activity and affinity resin stability. The method can easily be adapted to other antibodies with linear epitopes. The new resins allow gentler elution conditions than Protein A and could also reduce the costs of an initial capture step for mAb production.


Subject(s)
Antibodies, Monoclonal/chemistry , Broadly Neutralizing Antibodies/chemistry , Chromatography, Affinity/methods , HIV Antibodies/chemistry , Immunologic Techniques/methods , Sepharose/chemistry , Epitopes/chemistry , Ligands , Plant Extracts , Plant Proteins , Plants, Genetically Modified , Staphylococcal Protein A , Nicotiana/genetics , Nicotiana/metabolism
6.
Chem Biodivers ; 9(2): 282-97, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22344905

ABSTRACT

Mercurialis annua and M. perennis are medicinal plants used in complementary medicine. In the present work, analytical methods to allow a chemotaxonomic differentiation of M. annua and M. perennis by means of chemical marker compounds were established. In addition to previously published compounds, the exclusive presence of pyridine-3-carbonitrile and nicotinamide in CH(2) Cl(2) extracts obtained from the herbal parts of M. annua was demonstrated by GC/MS. Notably, pyridine-3-carbonitrile was identified for the first time as a natural product. Further chromatographic separation of the CH(2) Cl(2) extracts via polyamide yielded a MeOH fraction exhibiting a broad spectrum of side-chain saturated n-alkylresorcinols. While the n-alkylresorcinol pattern was similar for both plant species, some specific differences were observed for particular n-alkylresorcinol homologs. Finally, the investigation of H(2) O extracts by LC/MS/MS revealed the presence of depside constituents. Whereas, in M. perennis, a mixture of mercurialis acid (=(2R)-[(E)-caffeoyl]-2-oxoglutarate) and phaselic acid (=(E)-caffeoyl-2-malate) could be detected, in M. annua solely phaselic acid was found. By comparison with synthesized enantiomerically pure (2R)- and (2S)-phaselic acids, the configuration of the depside could be determined as (2S) in M. annua and as (2R) in M. perennis.


Subject(s)
Euphorbiaceae/chemistry , Euphorbiaceae/classification , Ketoglutaric Acids/isolation & purification , Medicine, Traditional , Niacinamide/isolation & purification , Nitriles/isolation & purification , Plant Extracts/isolation & purification , Pyridines/isolation & purification , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Metabolome
7.
Z Naturforsch C J Biosci ; 65(3-4): 174-9, 2010.
Article in English | MEDLINE | ID: mdl-20469634

ABSTRACT

Investigation of the dichloromethane extracts from herbal and root parts of Mercurialis perennis L. afforded a mixture of 11 homologous n-alkylresorcinols (ARs) with saturated odd-numbered alkyl side chains (C15:0-C27:0). In addition to three predominant ARs (C19:0, C21:0 and C23:0), a number of minor ARs were identified by use of LC-MS/MS and GC-MS techniques. Among the compounds detected, four uncommon ARs with even-numbered alkyl side chain lengths were also determined. The overall AR concentration in herbal parts was 7 to 9 times higher compared to that of the roots. The results presented may open a new view on the phytochemistry and pharmacognosy of M. perennis and other members of the Euphorbiaceae family.


Subject(s)
Euphorbiaceae/chemistry , Resorcinols/analysis , Chromatography, High Pressure Liquid , Germany , Mass Spectrometry , Models, Molecular , Plant Components, Aerial/chemistry , Plant Roots/chemistry , Resorcinols/chemistry , Resorcinols/isolation & purification , Resorcinols/metabolism
8.
J Agric Food Chem ; 57(17): 7712-8, 2009 Sep 09.
Article in English | MEDLINE | ID: mdl-19655802

ABSTRACT

Gallotannins were extracted from mango ( Mangifera indica L.) kernels with aqueous acetone (80%, v/v) and purified using liquid-liquid extraction and two-step low-pressure liquid chromatography (LPLC) on Sephadex LH-20. Analytical high-performance liquid chromatography and mass spectrometry confirmed the presence of hydrolyzable tannins with a degree of galloylation ranging from 4 to 9 and additionally revealed the presence of deca-, undeca-, and dodeca-O-galloylglucose. Further purification using two-step semipreparative HPLC resulted in three pure hydrolyzable tannins, penta-, hexa-, and hepta-O-galloylglucose, with antibacterial activity, as evidenced from the agar spot and critical dilution assays. Although the growth of lactic acid bacteria was not inhibited, the proliferation of Gram-positive food spoilage bacteria was prevented and the growth of Gram-negative Escherichia coli was reduced. Because bacterial growth could be restored by the addition of iron to the medium, this study strongly supports the view that the inhibitory effects of hydrolyzable tannins are due to their iron-complexing properties.


Subject(s)
Anti-Bacterial Agents/pharmacology , Hydrolyzable Tannins/isolation & purification , Hydrolyzable Tannins/pharmacology , Mangifera/chemistry , Seeds/chemistry , Chromatography, High Pressure Liquid , Escherichia coli/drug effects , Ferric Compounds/pharmacology , Ferrous Compounds/pharmacology , Gram-Positive Bacteria/drug effects , Iron Chelating Agents/pharmacology , Mass Spectrometry
9.
J Agric Food Chem ; 57(9): 3639-44, 2009 May 13.
Article in English | MEDLINE | ID: mdl-19338352

ABSTRACT

Despite a number of serious case reports of mango dermatitis, no attempts at the identification and quantification of allergenic 5-alk(en)ylresorcinols in mango fruits have so far been made. Therefore, total alk(en)ylresorcinol content and relative homologue composition in 13 mango peel samples and 7 samples of mango pulp were determined by HPLC and LC-MS/MS analyses. Furthermore, mango puree and nectar prepared on pilot plant scale were also analyzed and compared with commercially available thermally preserved products. Depending on cultivar, alk(en)ylresorcinol contents ranged from 79.3 to 1850.5 mg/kg of dry matter (DM) in mango peels and from 4.9 to 187.3 mg/kg of DM in samples of mango pulp. The profile of alk(en)ylresorcinols was found to be highly characteristic, with an average homologue composition of C15:0 (6.1%), C15:1 (1.7%), C17:0 (1.1%), C17:1 (52.5%), C17:2 (33.4%), C17:3 (2.4%), C19:1 (2.1%), and C19:2 (0.8%). Mango puree samples prepared from peeled and unpeeled fruits revealed contents of 3.8 and 12.3 mg/kg of fresh weight, respectively. Content and homologue composition were not significantly affected during puree processing and thermal preservation. In nectar samples prepared from peeled and unpeeled fruits, contents of 1.4 and 4.6 mg/L, respectively, were found.


Subject(s)
Antigens, Plant/analysis , Chromatography, High Pressure Liquid , Fruit/chemistry , Mangifera/chemistry , Resorcinols/analysis , Dermatitis, Allergic Contact/immunology , Food Handling/methods , Food Preservation/methods , Hot Temperature , Resorcinols/chemistry , Resorcinols/immunology
10.
Anal Bioanal Chem ; 391(1): 221-8, 2008 May.
Article in English | MEDLINE | ID: mdl-18297470

ABSTRACT

5-Alk(en)ylresorcinols in rye, wheat, spelt, and barley have been characterized by high-performance liquid chromatography coupled to atmospheric pressure chemical ionization multistage mass spectrometry (HPLC-APcI-MS(n)) for the first time. Among the 29 compounds analysed, several major and minor C(15), C(17), C(19), C(21), C(23), and C(25)-substituted resorcinols with saturated, monoenoic, dienoic, and/or oxygenated side-chains were characterized by their specific fragmentation patterns in collision-induced dissociation experiments. Additionally, a C(27:0) homologue, which has probably been overlooked in previous studies based on HPLC alone, was detected in all cereals analysed. Furthermore, we provide tentative evidence for the occurrence of alkylresorcinols with triolefinic side-chains, which have, to our knowledge, so far not been reported in any cereal species.


Subject(s)
Alkenes/chemistry , Alkynes/chemistry , Edible Grain/chemistry , Fruit/chemistry , Resorcinols/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry , Molecular Structure
11.
Phytochemistry ; 69(4): 988-93, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18155258

ABSTRACT

Bioassay directed extraction and purification of mango peels revealed the 5-(11'Z-heptadecenyl)-resorcinol (1) and the known 5-(8'Z,11'Z-heptadecadienyl)-resorcinol (2) previously not described in Mangifera indica L. The structures of both compounds were determined by extensive 1D and 2D NMR studies and MS. Both compounds exhibited potent cyclooxygenase (COX)-1 and COX-2 inhibitory activity with IC(50) values ranging from 1.9 (2) to 3.5 microM (1) and from 3.5 (2) to 4.4 (1) microM, respectively, coming close to the IC(50) values of reference drugs. 5-Lipoxygenase (5-LOX) catalyzed leukotriene formation was only slightly inhibited. Structure-activity studies by referring to synthetic saturated homologues indicated that the degree of unsaturation in the alkyl chain plays a key role for COX inhibitory activity, whereas the influence of chain length was less significant.


Subject(s)
Anti-Inflammatory Agents/chemistry , Mangifera/chemistry , Plant Extracts/chemistry , Resorcinols/chemistry , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Leukotriene Antagonists/chemistry , Leukotriene Antagonists/pharmacology , Leukotrienes/metabolism , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry , Molecular Structure , Plant Extracts/pharmacology , Resorcinols/pharmacology
12.
Rapid Commun Mass Spectrom ; 21(6): 945-51, 2007.
Article in English | MEDLINE | ID: mdl-17295361

ABSTRACT

5-Alkyl- and 5-alkenylresorcinols, as well as their hydroxylated derivatives, were extracted from mango (Mangifera indica L.) peels, purified on polyamide and characterized by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (HPLC/APcI-MS) for the first time. Among the 15 compounds analyzed, 3 major and 12 minor C(15)-, C(17)-, and C(19)-substituted resorcinols and related analogues, showing varying degrees of unsaturation, were characterized by their specific fragmentation patterns in collision-induced dissociation experiments. This marks the first report on the occurrence of mono-, di-, and triunsaturated C(15)-homologues, saturated and triunsaturated C(17)-homologues, and mono- and diunsaturated C(19)-homologues in mango peels. Additionally, several hydroxylated C(15)- and C(17)-homologues, also not yet described in mango, and a C(14)-monoene, unique because of its even-numbered side chain, were tentatively identified on the basis of their fragmentation patterns. The results obtained in the present study indicate that HPLC-DAD-APcI-MS(n), combined with the newly developed solid-phase extraction, is a powerful tool for the analysis of alk(en)ylresorcinols and could therefore be used for their determination in various matrices.


Subject(s)
Alkenes/chemistry , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Models, Chemical , Plant Extracts/chemistry , Resorcinols/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Atmospheric Pressure , Computer Simulation , Mangifera , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...