Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2404154, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925613

ABSTRACT

The global climate change is mainly caused by carbon dioxide (CO2) emissions. To help reduce CO2 emissions and conserve thermal energy, sustainable materials based on flexible thermal insulation are developed to minimize heat flux, drawing inspiration from natural systems such as polar bear hairs. The unique structure of hollow double-shell fibers makes it possible to achieve low thermal conductivity in the material while retaining exceptional elasticity, allowing it to adapt to insulation systems of any shape. The layered system of porous mats reaches a thermal conductivity coefficient of 0.031 W∙m⁻¹âˆ™K⁻¹ and enables to reduce the heat transfer. The results achieved using scanning thermal microscopy (SThM) correlate with the simulated heat flow in the case of individual fibers. This research study brings new insights into the energy efficiency of domestic environments, thereby addressing the growing demand for sustainable and high-performance insulation materials for saving energy loss and reducing pollution footprint.

2.
Nanoscale ; 15(15): 6890-6900, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36960764

ABSTRACT

The medical field is continuously seeking new solutions and materials, where cellulose materials due to their high biocompatibility have great potential. Here we investigate the applicability of cellulose acetate (CA) electrospun fibers for bone tissue regeneration. For the first time we show the piezoelectric properties of electrospun CA fibers via high voltage switching spectroscopy piezoresponse force microscopy (HVSS-PFM) tests, which are followed by surface potential studies using Kelvin probe force microscopy (KPFM) and zeta potential measurements. Piezoelectric coefficient for CA fibers of 6.68 ± 1.70 pmV-1 along with high surface (718 mV) and zeta (-12.2 mV) potentials allowed us to mimic natural electrical environment favoring bone cell attachment and growth. Importantly, the synergy between increased surface potential and highly developed structure of the fibrous scaffold led to the formation of a vast 3D network of collagen produced by osteoblasts only after 7 days of in vitro culture. We clearly show the advantages of CA scaffolds as a bone replacement material, when long-lasting structural support is needed.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Osteoblasts , Cellulose/pharmacology , Cellulose/chemistry , Collagen/chemistry
3.
Carbohydr Polym ; 301(Pt A): 120277, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36436848

ABSTRACT

Chitosan-based films modified with synthesized (propylene glycol monoacetate, propylene glycol esters of fatty acids, and epoxidized propylene glycol esters) and commercial eco-friendly plasticizers (epoxidized soybean oil and epoxidized palm oil) were prepared by a casting technique, with the aim to obtain environmentally friendly materials for packaging applications. To assess the applicability of alternative plasticizers, their properties were compared to the two most common plasticizers, i.e. glycerol and sorbitol. The chemical structure of newly synthesized plasticizers was verified by gas chromatography with mass detector, infrared spectroscopy and 1H NMR; and their acid, epoxy, iodine, and saponification values were determined. Plasticized chitosan-based films were characterized in terms of hydrophilic, barrier, thermal, mechanical properties, zeta potential and morphology, confirming their flexibility and homogeneity. The research confirmed that the alternative plasticizers introduced by us are more effective than commercially available ones, exhibiting lower hydrophilicity and superior mechanical properties compared to samples plasticized with traditional plasticizers. Moreover, these properties were found to be even better after ageing for 10 months.


Subject(s)
Chitosan , Plasticizers , Plasticizers/chemistry , Chitosan/chemistry , Glycerol/chemistry , Esters , Propylene Glycols
4.
Nanoscale ; 13(38): 16034-16051, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34581383

ABSTRACT

Fog is an underestimated source of water, especially in regions where conventional methods of water harvesting are impossible, ineffective, or challenging for low-cost water resources. Interestingly, many novel methods and developments for effective water harvesting are inspired by nature. Therefore, in this review, we focused on one of the most researched and developing forms of electrospun polymer fibers, which successfully imitate many fascinating natural materials for instance spider webs. We showed how fiber morphology and wetting properties can increase the fog collection rate, and also observed the influence of fog water collection parameters on testing their efficiency. This review summarizes the current state of the art on water collection by fibrous meshes and offers suggestions for the testing of new designs under laboratory conditions by classifying the parameters already reported in experimental set-ups. This is extremely important, as fog collection under laboratory conditions is the first step toward creating a new water harvesting technology. This review summarizes all the approaches taken so far to develop the most effective water collection systems based on electrospun polymer fibers.

5.
ACS Nano ; 15(5): 8848-8859, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33900735

ABSTRACT

Access to clean water is a global challenge, and fog collectors are a promising solution. Polycarbonate (PC) fibers have been used in fog collectors but with limited efficiency. In this study, we show that controlling voltage polarity and humidity during the electrospinning of PC fibers improves their surface properties for water collection capability. We experimentally measured the effect of both the surface morphology and the chemistry of PC fiber on their surface potential and mechanical properties in relation to the water collection efficiency from fog. PC fibers produced at high humidity and with negative voltage polarity show a superior water collection rate combined with the highest tensile strength. We proved that electric potential on surface and morphology are crucial, as often designed by nature, for enhancing the water collection capabilities via the single-step production of fibers without any postprocessing needs.

6.
Colloids Surf B Biointerfaces ; 199: 111554, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33421924

ABSTRACT

Atopic dermatitis (eczema), one of the most common disease and also most difficult to treat, is seeking for novel development not only in medicine but also in bioengineering. Moisturization is the key in eczema treatment as dry skin triggers inflammation that damages the skin barrier. Thus, here we combine electrospun hydrophobic polystyrene (PS) and hydrophilic nylon 6 (PA6) with oils to create patches helping to moisturize atopic skin. The fibrous membranes manufactured using electrospinning: PS, PA6, composite PS - PA6 and sandwich system combining them were characterized by water vapor transmission rates (WVTR) and fluid uptake ability (FUA). To create the most effective moisturizing patches we use borage, black cumin seed and evening primrose oil and tested their spreading. We show a great potential of our designed patches, the oil release tests on a skin and their moisturizing effect were verified. Our results distinctly reveal that both fiber sizes and hydrophilicity/hydrophobicity of polymer influence oil spreading, release from membranes and WVTR measurements. Importantly, the direct skin test indicates the evident increase of hydration for both dry and normal skin after using the patches. The electrospun patches based on the hydrophobic and hydrophilic polymers have outstanding properties to be used as oil carriers for atopic dermatitis treatment.


Subject(s)
Dermatitis, Atopic , Eczema , Dermatitis, Atopic/drug therapy , Humans , Hydrophobic and Hydrophilic Interactions , Skin
7.
RSC Adv ; 11(18): 10866-10873, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-35423545

ABSTRACT

To increase fog collection efficiency in a fiber system, controlled wetting properties are desirable. In this work, hydrophobic (PA11) and hydrophilic (PA6) polyamides were tested to verify the surface wetting effect on fog water collection rate. Highly porous fiber meshes were obtained from both polymer solutions. Randomly oriented fibers with average diameter of approximately 150 nm were observed with a scanning electron microscope (SEM). Despite the similar geometry and zeta potential of PA6 and PA11 meshes, it was shown that the hydrophobic PA11 nanofibers are more effective at water collection than hydrophilic PA6. These results indicate that wetting properties of electrospun nanofiber mesh have a significant effect on the process of draining from the mesh, as discussed in this paper. The results obtained are crucial for designing more efficient fog water collectors that include nanofibers in their construction.

8.
Materials (Basel) ; 13(18)2020 Sep 19.
Article in English | MEDLINE | ID: mdl-32961759

ABSTRACT

Electric field strength and polarity in electrospinning processes and their effect on process dynamics and the physical properties of as-spun fibers is studied. Using a solution of the neutral polymer such as poly(methyl methacrylate) (PMMA) we explored the electrospun jet motion issued from a Taylor cone. We focused on the straight jet section up to the incipient stage of the bending instability and on the radius of the disk of the fibers deposited on the collecting electrode. A new correlation formula using dimensionless parameters was found, characterizing the effect of the electric field on the length of the straight jet, L˜E~E˜0.55. This correlation was found to be valid when the spinneret was either negatively or positively charged and the electrode grounded. The fiber deposition radius was found to be independent of the electric field strength and polarity. When the spinneret was negatively charged, L˜E was longer, the as-spun fibers were wider. The positively charged setup resulted in fibers with enhanced mechanical properties and higher crystallinity. This work demonstrates that often-overlooked electrical polarity and field strength parameters influence the dynamics of fiber electrospinning, which is crucial for designing polymer fiber properties and optimizing their collection.

9.
Materials (Basel) ; 13(8)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340243

ABSTRACT

One of the most frequently applied polymers in regenerative medicine is polystyrene (PS), which is commonly used as a flat surface and requires surface modifications for cell culture study. Here, hierarchical composite meshes were fabricated via electrospinning PS with nylon 6 (PA6) to obtain enhanced cell proliferation, development, and integration with nondegradable polymer fibers. The biomimetic approach of designed meshes was verified with a scanning electron microscope (SEM) and MTS assay up to 7 days of cell culture. In particular, adding PA6 nanofibers changes the fibroblast attachment to meshes and their development, which can be observed by cell flattening, filopodia formation, and spreading. The proposed single-step manufacturing of meshes controlled the surface properties and roughness of produced composites, allowing governing cell behavior. Within this study, we show the alternative engineering of nondegradable meshes without post-treatment steps, which can be used in various applications in regenerative medicine.

10.
RSC Adv ; 10(38): 22335-22342, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-35514544

ABSTRACT

The water crisis is a big social problem and one of the solutions are the Fog Water Collectors (FWCs) that are placed in areas, where the use of conventional methods to collect water is impossible or inadequate. The most common fog collecting medium in FWC is Raschel mesh, which in our study is modified with electrospun polyamide 6 (PA6) nanofibers. The hydrophilic PA6 nanofibers were directly deposited on Raschel meshes to create the hierarchical structure that increases the effective surface area which enhances the ability to catch water droplets from fog. The meshes and the wetting behavior were investigated using a scanning electron microscope (SEM) and environmental SEM (ESEM). We performed the fog water collection experiments on various configurations of Raschel meshes with hydrophilic PA6 nanofibers. The addition of hydrophilic nanofibers allowed us to obtain 3 times higher water collection rate of collecting water from fog. Within this study, we show the innovative and straightforward way to modify the existing technology that improves water collection by changing the mechanisms of droplet formation on the mesh.

11.
ACS Appl Mater Interfaces ; 12(1): 1665-1676, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31820919

ABSTRACT

Water is the basis of life in the world. Unfortunately, resources are shrinking at an alarming rate. The lack of access to water is still the biggest problem in the modern world. The key to solving it is to find new unconventional ways to obtain water from alternative sources. Fog collectors are becoming an increasingly important way of water harvesting as there are places in the world where fog is the only source of water. Our aim is to apply electrospun fiber technology, due to its high surface area, to increase fog collection efficiency. Therefore, composites consisting of hydrophobic and hydrophilic fibers were successfully fabricated using a two-nozzle electrospinning setup. This design enables the realization of optimal meshes for harvesting water from fog. In our studies we focused on combining hydrophobic polystyrene (PS) and hydrophilic polyamide 6 (PA6), surface properties in the produced meshes, without any chemical modifications, on the basis of new hierarchical composites for collecting water. This combination of hydrophobic and hydrophilic materials causes water to condense on the hydrophobic microfibers and to run down on the hydrophilic nanofibers. By adjusting the fraction of PA6 nanofibers, we were able to tune the mechanical properties of PS meshes and importantly increase the efficiency in collecting water. We combined a few characterization methods together with novel image processing protocols for the analysis of fiber fractions in the constructed meshes. The obtained results show a new single-step method to produce meshes with enhanced mechanical properties and water collecting abilities that can be applied in existing fog water collectors. This is a new promising design for fog collectors with nano- and macrofibers which are able to efficiently harvest water, showing great application in comparison to commercially available standard meshes.

12.
Polymers (Basel) ; 11(1)2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30960018

ABSTRACT

Wettability of electrospun fibers is one of the key parameters in the biomedical and filtration industry. Within this comprehensive study of contact angles on three-dimensional (3D) meshes made of electrospun fibers and films, from seven types of polymers, we clearly indicated the importance of roughness analysis. Surface chemistry was analyzed with X-ray photoelectron microscopy (XPS) and it showed no significant difference between fibers and films, confirming that the hydrophobic properties of the surfaces can be enhanced by just roughness without any chemical treatment. The surface geometry was determining factor in wetting contact angle analysis on electrospun meshes. We noted that it was very important how the geometry of electrospun surfaces was validated. The commonly used fiber diameter was not necessarily a convincing parameter unless it was correlated with the surface roughness or fraction of fibers or pores. Importantly, this study provides the guidelines to verify the surface free energy decrease with the fiber fraction for the meshes, to validate the changes in wetting contact angles. Eventually, the analysis suggested that meshes could maintain the entrapped air between fibers, decreasing surface free energies for polymers, which increased the contact angle for liquids with surface tension above the critical Wenzel level to maintain the Cassie-Baxter regime for hydrophobic surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...