Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5858, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730711

ABSTRACT

Rieske oxygenases use a Rieske-type [2Fe-2S] cluster and a mononuclear iron center to initiate a range of chemical transformations. However, few details exist regarding how this catalytic scaffold can be predictively tuned to catalyze divergent reactions. Therefore, in this work, using a combination of structural analyses, as well as substrate and rational protein-based engineering campaigns, we elucidate the architectural trends that govern catalytic outcome in the Rieske monooxygenase TsaM. We identify structural features that permit a substrate to be functionalized by TsaM and pinpoint active-site residues that can be targeted to manipulate reactivity. Exploiting these findings allowed for custom tuning of TsaM reactivity: substrates are identified that support divergent TsaM-catalyzed reactions and variants are created that exclusively catalyze dioxygenation or sequential monooxygenation chemistry. Importantly, we further leverage these trends to tune the reactivity of additional monooxygenase and dioxygenase enzymes, and thereby provide strategies to custom tune Rieske oxygenase reaction outcomes.


Subject(s)
Dioxygenases , Oxygenases , Mixed Function Oxygenases , Catalysis , Culture
2.
J Biol Chem ; 299(3): 102958, 2023 03.
Article in English | MEDLINE | ID: mdl-36731794

ABSTRACT

Chlorophyll pigments are used by photosynthetic organisms to facilitate light capture and mediate the conversion of sunlight into chemical energy. Due to the indispensable nature of this pigment and its propensity to form reactive oxygen species, organisms heavily invest in its biosynthesis, recycling, and degradation. One key enzyme implicated in these processes is chlorophyllase, an α/ß hydrolase that hydrolyzes the phytol tail of chlorophyll pigments to produce chlorophyllide molecules. This enzyme was discovered a century ago, but despite its importance to diverse photosynthetic organisms, there are still many missing biochemical details regarding how chlorophyllase functions. Here, we present the 4.46-Å resolution crystal structure of chlorophyllase from Triticum aestivum. This structure reveals the dimeric architecture of chlorophyllase, the arrangement of catalytic residues, an unexpected divalent metal ion-binding site, and a substrate-binding site that can accommodate a diverse range of pigments. Further, this structure exhibits the existence of both intermolecular and intramolecular disulfide bonds. We investigated the importance of these architectural features using enzyme kinetics, mass spectrometry, and thermal shift assays. Through this work, we demonstrated that the oxidation state of the Cys residues is imperative to the activity and stability of chlorophyllase, illuminating a biochemical trigger for responding to environmental stress. Additional bioinformatics analysis of the chlorophyllase enzyme family reveals widespread conservation of key catalytic residues and the identified "redox switch" among other plant chlorophyllase homologs, thus revealing key details regarding the structure-function relationships in chlorophyllase.


Subject(s)
Carboxylic Ester Hydrolases , Chlorophyll , Triticum , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Chlorophyll/metabolism , Disulfides , Triticum/enzymology , Plant Proteins/chemistry , Plant Proteins/metabolism
3.
ACS Cent Sci ; 8(10): 1393-1403, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36313167

ABSTRACT

Rieske oxygenases perform precise C-H bond functionalization reactions in anabolic and catabolic pathways. These reactions are typically characterized as monooxygenation or dioxygenation reactions, but other divergent reactions are also catalyzed by Rieske oxygenases. Chlorophyll(ide) a oxygenase (CAO), for example is proposed to catalyze two monooxygenation reactions to transform a methyl-group into the formyl-group of Chlorophyll b. This formyl group, like the formyl groups found in other chlorophyll pigments, tunes the absorption spectra of chlorophyllb and supports the ability of several photosynthetic organisms to adapt to environmental light. Despite the importance of this reaction, CAO has never been studied in vitro with purified protein, leaving many open questions regarding whether CAO can facilitate both oxygenation reactions using just the Rieske oxygenase machinery. In this study, we demonstrated that four CAO homologues in partnership with a non-native reductase convert a Chlorophyll a precursor, chlorophyllidea, into chlorophyllideb in vitro. Analysis of this reaction confirmed the existence of the proposed intermediate, highlighted the stereospecificity of the reaction, and revealed the potential of CAO as a tool for synthesizing custom-tuned natural and unnatural chlorophyll pigments. This work thus adds to our fundamental understanding of chlorophyll biosynthesis and Rieske oxygenase chemistry.

4.
Nat Chem ; 14(10): 1202, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36167806
5.
ACS Omega ; 5(50): 32250-32255, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33376862

ABSTRACT

The ß-galactosidase enzyme is a common reporter enzyme that has been used extensively in microbiological and synthetic biology research. Here, we demonstrate that caffeine and theophylline, common natural methylxanthine products found in many foods and pharmaceuticals, negatively impact both the expression and activity of ß-galactosidase in Escherichia coli. The ß-galactosidase activity in E. coli grown with increasing concentrations of caffeine and theophylline was reduced over sixfold in a dose-dependent manner. We also observed decreasing lacZ mRNA transcript levels with increasing methylxanthine concentrations in the growth media. Similarly, caffeine and theophylline inhibit the activity of the purified ß-galactosidase enzyme, with an approximately 1.7-fold increase in K M toward o-nitrophenyl-ß-galactoside and a concomitant decrease in v max. The authors recommend the use of alternative reporter systems when such methylxanthines are expected to be present.

SELECTION OF CITATIONS
SEARCH DETAIL
...