Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater Odontol Scand ; 3(1): 36-46, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28642930

ABSTRACT

Objectives: Bonding of zirconia crowns and bridges to abutments is important, not only bonding of the thin resin layer to the abutment, but also bonding to the zirconia ceramic is crucial. Both mechanical and chemical adhesion are desired. Mechanical retention of dental porcelain achieved by etching with moderately concentrated hydrofluoric acid is not possible with zirconia ceramics. The purpose of this study was to show that etching is possible with relative low melting fluoride compounds such as ammonium hydrogen difluoride and potassium hydrogen difluoride. Materials and methods: Before melting, the fluorides can be introduced as powders or as aqueous slurries to the contact surfaces of the zirconia. After melting, the yttria-stabilized zirconia surface revealed a surface similar to an HF-etched dental feldspathic porcelain surface. Shear bond testing (n = 10) was performed with zirconia attached to zirconia with the Duo-Link composite luting cement (Bisco) after treatment of the etched zirconia surfaces with Bis-Silane (Bisco) and the Porcelain Bonding Resin (Bisco). Results: Values for adhesive strength (mean ± standard deviation) after melt etching of the surfaces with initially dry powders were for K[FHF], (31.2 ± 7.5) MPa and for NH4[FHF] (31.0 ± 11.8) MPa. When initially aqueous slurries were applied, the values were for K[FHF] (42.7 ± 12.7) MPa and for NH4[FHF] (40.3 ± 10.0) MPa. Conclusion: Good adhesion to zirconia can be achieved by a procedure including etching with selected melted fluoride compounds.

2.
Eur J Oral Sci ; 113(5): 422-8, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16202031

ABSTRACT

Two matrix resins for fiber composites that remain in a fluid state during storage and handling before polymerization were evaluated. The resin mixtures, based on methyl methacrylate (MMA), were produced with two different cross-linking agent systems: 1,4-butanediol dimethacrylate and ethylene glycol dimethacrylate or diethylene glycol dimethacrylate. Water sorption, water solubility, water uptake and residual MMA monomer were determined. Thermomechanical analysis was used to determine linear dimensional changes as a function of temperature. Flexural strength and modulus as well as fracture work and the maximum stress intensity factor were determined. The results revealed similar values for both matrix polymers regarding water sorption, water solubility, water uptake, residual MMA monomer (0.5 wt% (+/- 0.03)) and coefficient of linear thermal expansion. Flexural strength for polymer B was 68.7 MPa (+/- 9.8) compared to 56.0 MPa (+/- 13.3) for polymer A when tested dry and 64 MPa (+/- 6.1) compared to (54 MPa (+/- 3.3) when water-saturated. Fracture toughness tests showed higher maximum stress intensity factor values for polymer B (0.75 +/- 0.17) MPa x m1/2 than for polymer A (0.55 +/- 0.12) MPa x m1/2. The resin binders showed an appropriate consistency while remaining in a fluid state during storage and manipulation.


Subject(s)
Composite Resins/chemistry , Methylmethacrylate/chemistry , Absorption , Adsorption , Cross-Linking Reagents/chemistry , Elasticity , Humans , Materials Testing , Methacrylates/chemistry , Pliability , Polymethyl Methacrylate/chemistry , Polyvinyl Chloride/chemistry , Polyvinyls/chemistry , Solubility , Stress, Mechanical , Surface Properties , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...