Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(29): 9797-9801, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31046187

ABSTRACT

Deprotonation usually occurs as an unwanted side reaction in the Lewis pair polymerization of Michael acceptors, for which the conjugated addition of the Lewis base to the acid-activated monomer is the commonly accepted initiation mechanism. This has also been reported for B-P-based bridged Lewis pairs (BLPs) that form macrocyclic addition products. We now show that the formerly unwanted deprotonation is the likely initiation pathway in the case of Al-P-based BLPs. In a detailed study of a series of Al-P-based BLPs, using a combination of single-crystal diffraction experiments (X-ray and neutron) and mechanistic investigations (experimental and computational), an active role of the methylene bridge was revealed, acting as a base towards the α-acidic monomers. Additionally, the polymerization studies proved a living behavior combined with significantly high activities, narrow molecular mass distributions, and the possibility of copolymerization.

2.
Chemistry ; 24(56): 14950-14957, 2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30048018

ABSTRACT

Unlike different types of Lewis pairs as polymerization catalysts for acrylic monomers, organometallic aluminum(III) compounds are reported that show a surprisingly high polymerization activity even without an additional Lewis base. DFT calculations, end group analysis and kinetic investigations clearly suggest a main group element (MGE) group transfer polymerization (GTP) mechanism analogous to the known metal-mediated GTP mechanism. The novel catalysts perform a precision polymerization of a broad variety of monomers, ranging from 2-isopropenyl-2-oxazoline to tert-butylmethacrylate and N,N-dimethylacrylamide. Additionally, extended Michael-type structures like 4-vinyl pyridine are accessible. Especially the Al(III) half-metallocenes show an almost quantitative initiator efficiency, and, combined with the living character of the polymerization reactions, they enable the synthesis of block copolymers, even with unconventional monomers like vinyl phosphonates.

3.
J Am Chem Soc ; 138(24): 7776-81, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27254134

ABSTRACT

Herein we report on the catalytic polymerization of diverse Michael-type monomers with high precision by using simple but highly active combinations of phosphorus-containing Lewis bases and organoaluminum compounds. The interacting Lewis pair catalysts enable the control of molecular weight and microstructure of the produced polymers. The reactions show a linear Mn vs consumption plot thus proving a living type polymerization. The initiation has been investigated by end-group analysis with ESI mass spectrometric analysis. With these main-group element Lewis acid base pairs, it is not only possible to polymerize sterically demanding, functionalized as well as heteroatom containing monomers but also, for the first time, to catalytically polymerize extended Michael systems, like 4-vinylpyridine.

SELECTION OF CITATIONS
SEARCH DETAIL
...