Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(24)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817373

ABSTRACT

Background: Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are the major causative agents of acute and chronic infections. Antibiotic-loaded calcium sulfate beads (ALCSB) are used in the management of musculoskeletal infections such as periprosthetic joint infections (PJI). Methods: To determine whether the number and spatial distribution of ALCSB are important factors to totally eradicate biofilms, ALCSBs containing vancomycin and tobramycin were placed on 24 h agar lawn biofilms as a single bead in the center, or as 16 beads placed as four clusters of four, a ring around the edge and as a group in the center or 19 beads evenly across the plate. Bioluminescence was used to assess spatial metabolic activity in real time. Replica plating was used to assess viability. Results: For both strains antibiotics released from the beads completely killed biofilm bacteria in a zone immediately adjacent to each bead. However, for PA extended incubation revealed the emergence of resistant colony phenotypes between the zone of eradication and the background lawn. The rate of biofilm clearing was greater when the beads were distributed evenly over the plate. Conclusions: Both number and distribution pattern of ALCSB are important to ensure adequate coverage of antibiotics required to eradicate biofilms.

2.
J Orthop Res ; 36(9): 2349-2354, 2018 09.
Article in English | MEDLINE | ID: mdl-29603341

ABSTRACT

Pulse lavage (PL) debridement and antibiotic loaded calcium sulfate beads (CS-B) are both used for the treatment of biofilm related periprosthetic joint infection (PJI). However, the efficacy of these alone and in combination for eradicating biofilm from orthopaedic metal implant surfaces is unclear. The purpose of the study was to understand the efficacy of PL and antibiotic loaded CS-B in eradicating bacterial biofilms on 316L stainless steel (SS) alone and in combination in vitro. Biofilms of bioluminescent strains of Pseudomonas aeruginosa Xen41 and a USA300 MRSA Staphylococcus aureus SAP231 were grown on SS coupons for 3 days. The coupons were either, (i) debrided for 3 s with PL, (ii) exposed to tobramycin (TOB) and vancomycin (VAN) loaded CS-B for 24 h, or (iii) exposed to both. An untreated biofilm served as a control. The amount of biofilm was measured by bioluminescence, viable plate count and confocal microscopy using live/dead staining. PL alone reduced the CFU count of both strains of biofilms by approximately 2 orders of magnitude, from an initial cell count on metal surface of approximately 109 CFU/cm2 . The antibiotic loaded CS-B caused an approximate six log reduction and the combination completely eradicated viable biofilm bacteria. Bioluminescence and confocal imaging corroborated the CFU data. While PL and antibiotic loaded CS-B both significantly reduced biofilm, the combination of two was more effective than alone in removing biofilms from SS implant surfaces. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2349-2354, 2018.


Subject(s)
Anti-Bacterial Agents/chemistry , Biofilms , Calcium Sulfate/chemistry , Prostheses and Implants , Prosthesis Design , Biocompatible Materials , Debridement , Humans , Luminescence , Metals , Microbial Sensitivity Tests , Microscopy, Confocal , Prosthesis-Related Infections/microbiology , Pseudomonas aeruginosa , Staphylococcal Infections , Staphylococcus aureus , Therapeutic Irrigation , Tobramycin/administration & dosage , Vancomycin/administration & dosage
3.
J Control Release ; 248: 24-32, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28087408

ABSTRACT

Antibiotic loaded cement beads are commonly used for the treatment of biofilm related orthopaedic periprosthetic infections; however the effects of antibiotic loading and exposure of beads to body fluids on release kinetics are unclear. The purpose of this study was to determine the effects of (i) antibiotic loading density (ii) loading amount (iii) material type and (iv) exposure to body fluids (blood or synovial fluid) on release kinetics and efficacy of antibiotics against planktonic and lawn biofilm bacteria. Short-term release into an agar gel was evaluated using a fluorescent tracer (fluorescein) incorporated in the carrier materials calcium sulfate (CaSO4) and poly methyl methacrylate (PMMA). Different fluorescein concentrations in CaSO4 beads were evaluated. Mechanical properties of fluorescein-incorporated beads were analyzed. Efficacy of the antibiotics vancomycin (VAN) or tobramycin (TOB) alone and in combination was evaluated against lawn biofilms of bioluminescent strains of Staphylococcus aureus and Pseudomonas aeruginosa. Zones of inhibition of cultures (ZOI) were measured visually and using an in-vivo imaging system (IVIS). The influence of body fluids on release was assessed using CaSO4 beads that contained fluorescein or antibiotics and were pre-coated with human blood or synovial fluid. The spread from the beads followed a square root of time relationship in all cases. The loading concentration had no influence on short-term fluorescein release and pre-coating of beads with body fluids did not affect short-term release or antibacterial activity. Compared to PMMA, CaSO4 had a more rapid short term rate of elution and activity against planktonic and lawn biofilms. This study highlights the importance of considering antibiotic loading and packing density when investigating the clinical application of bone cements for infection management.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Biofilms/drug effects , Bone Cements/chemistry , Drug Carriers/chemistry , Tobramycin/administration & dosage , Vancomycin/administration & dosage , Anti-Bacterial Agents/pharmacology , Calcium Sulfate/chemistry , Humans , Polymethyl Methacrylate/chemistry , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Tobramycin/pharmacology , Vancomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...