Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 300(7): 107436, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838775

ABSTRACT

Hearing crucially depends on cochlear ion homeostasis as evident from deafness elicited by mutations in various genes encoding cation or anion channels and transporters. Ablation of ClC­K/barttin chloride channels causes deafness by interfering with the positive electrical potential of the endolymph, but roles of other anion channels in the inner ear have not been studied. Here we report the intracochlear distribution of all five LRRC8 subunits of VRAC, a volume-regulated anion channel that transports chloride, metabolites, and drugs such as the ototoxic anti-cancer drug cisplatin, and explore its physiological role by ablating its subunits. Sensory hair cells express all LRRC8 isoforms, whereas only LRRC8A, D and E were found in the potassium-secreting epithelium of the stria vascularis. Cochlear disruption of the essential LRRC8A subunit, or combined ablation of LRRC8D and E, resulted in cochlear degeneration and congenital deafness of Lrrc8a-/- mice. It was associated with a progressive degeneration of the organ of Corti and its innervating spiral ganglion. Like disruption of ClC-K/barttin, loss of VRAC severely reduced the endocochlear potential. However, the mechanism underlying this reduction seems different. Disruption of VRAC, but not ClC-K/barttin, led to an almost complete loss of Kir4.1 (KCNJ10), a strial K+ channel crucial for the generation of the endocochlear potential. The strong downregulation of Kir4.1 might be secondary to a loss of VRAC-mediated transport of metabolites regulating inner ear redox potential such as glutathione. Our study extends the knowledge of the role of cochlear ion transport in hearing and ototoxicity.

2.
Shock ; 54(6): 761-773, 2020 12.
Article in English | MEDLINE | ID: mdl-32205793

ABSTRACT

The purpose of this study was to reveal possible consequences of long-bone fracture on cardiac tissue and to analyze the role of systemically elevated danger associated molecular patterns, complement anaphylatoxins and cytokines. Blood samples of mice, pigs, and humans after a fracture were analyzed by ELISAs for complement component 5a (C5a), tumor necrosis factor (TNF), and extracellular histones. In vivo results were completed by in vitro experiments with human cardiomyocytes treated with TNF and extracellular histones. The influence of histones and human plasma after fracture on isolated human polymorphonuclear leukocytes (PMNs) was investigated. An elevation of TNF, C5a, and extracellular histones after long bone fracture was measured. Moreover, the appearance of systemic troponin I levels was observed and structural changes in connexin 43 and desmin were detected. Further, the presence of TNF leads to elevation of reactive oxygen species, troponin I release, and histone appearance in supernatant of human cardiomyocytes. Incubation of human PMNs with histones and plasma of patients after fracture lead to formation of neutrophil extracellular traps. Present results suggest that structural alterations in the heart might be consequences of the complement activation, the release of extracellular histones, and the systemic TNF elevation in the context of a long bone fracture.


Subject(s)
Complement C5a/metabolism , Extracellular Traps/metabolism , Fractures, Bone/blood , Histones/blood , Myocytes, Cardiac/metabolism , Tumor Necrosis Factor-alpha/blood , Animals , Fractures, Bone/pathology , Humans , Leukocytes, Mononuclear/metabolism , Male , Mice , Myocytes, Cardiac/pathology , Swine
3.
Clin Infect Dis ; 71(5): 1161-1167, 2020 08 22.
Article in English | MEDLINE | ID: mdl-31560049

ABSTRACT

BACKGROUND: Tuberculosis (TB) control is hindered by absence of rapid tests to identify Mycobacterium tuberculosis (MTB) and detect isoniazid (INH) and rifampin (RIF) resistance. We evaluated the accuracy of the BD MAX multidrug-resistant (MDR)-TB assay (BD MAX) in South Africa, Uganda, India, and Peru. METHODS: Outpatient adults with signs/symptoms of pulmonary TB were prospectively enrolled. Sputum smear microscopy and BD MAX were performed on a single raw sputum, which was then processed for culture and phenotypic drug susceptibility testing (DST), BD MAX, and Xpert MTB/RIF (Xpert). RESULTS: 1053 participants with presumptive TB were enrolled (47% female; 32% with human immunodeficiency virus). In patients with confirmed TB, BD MAX sensitivity was 93% (262/282 [95% CI, 89-95%]); specificity was 97% (593/610 [96-98%]) among participants with negative cultures on raw sputa. BD MAX sensitivity was 100% (175/175 [98-100%]) for smear-positive samples (fluorescence microscopy), and 81% (87/107 [73-88%]) in smear-negative samples. Among participants with both BD MAX and Xpert, sensitivity was 91% (249/274 [87-94%]) for BD MAX and 90% (246/274 [86-93%]) for Xpert on processed sputa. Sensitivity and specificity for RIF resistance compared with phenotypic DST were 90% (9/10 [60-98%]) and 95% (211/222 [91-97%]), respectively. Sensitivity and specificity for detection of INH resistance were 82% (22/27 [63-92%]) and 100% (205/205 [98-100%]), respectively. CONCLUSIONS: The BD MAX MDR-TB assay had high sensitivity and specificity for detection of MTB and RIF and INH drug resistance and may be an important tool for rapid detection of TB and MDR-TB globally.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Adult , Drug Resistance, Bacterial , Female , Humans , India , Isoniazid/pharmacology , Male , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , Peru , Rifampin/pharmacology , Sensitivity and Specificity , South Africa , Sputum , Tuberculosis, Multidrug-Resistant/diagnosis , Uganda
4.
Shock ; 53(5): 620-629, 2020 05.
Article in English | MEDLINE | ID: mdl-31313740

ABSTRACT

OBJECTIVE: The aim of this study was to define the influence of trauma on cardiac glucose and fatty acid transport. The effects were investigated in vivo in a porcine mono- and polytrauma model and in vitro in human cardiomyocytes, which were treated simultaneously with different inflammatory substances, mimicking posttraumatic inflammatory conditions. METHODS AND RESULTS: In the porcine fracture- and polytrauma model, blood glucose concentrations were measured by blood gas analysis during an observation period of 72 h. The expression of cardiac glucose and fatty acid transporters in the left ventricle was determined by RT-qPCR and immunofluorescence. Cardiac and hepatic glycogen storage was examined. Furthermore, human cardiomyocytes were exposed to a defined trauma-cocktail and the expression levels of glucose- and fatty acid transporters were determined. Early after polytrauma, hyperglycemia was observed. After 48 and 72 h, pigs with fracture- and polytrauma developed hypoglycemia. The propofol demand significantly increased posttrauma. The hepatic glycogen concentration was reduced 72 h after trauma. Cardiac glucose and fatty acid transporters changed in both trauma models in vivo as well as in vitro in human cardiomyocytes in presence of proinflammatory mediators. CONCLUSIONS: Monotrauma as well as polytrauma changed the cardiac energy transport by altering the expression of glucose and fatty acid transporters. In vitro data suggest that human cardiomyocytes shift to a state alike myocardial hibernation preferring glucose as primary energy source to maintain cardiac function.


Subject(s)
Fatty Acid Transport Proteins/metabolism , Glucose/metabolism , Heart Ventricles/metabolism , Multiple Trauma/metabolism , Animals , Cell Culture Techniques , Disease Models, Animal , Humans , Inflammation Mediators , Myocytes, Cardiac/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...