Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol Clin Exp Res (Hoboken) ; 47(1): 87-94, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36446735

ABSTRACT

BACKGROUND: Potassium channels play an important role in the basal tone and dilation of cerebral resistance arterioles in response to many stimuli. However, the effect of prenatal alcohol exposure (PAE) on specific potassium channel function remains unknown. The first goal of this study was to determine the influence of PAE on the reactivity of cerebral arterioles to activation of ATP-sensitive potassium (KATP ) and BK channels. Our second goal was to determine whether oxidative stress contributed to potassium channel dysfunction of cerebral arterioles following PAE. METHODS: We fed Sprague-Dawley dams a liquid diet with or without alcohol (3% EtOH) for the duration of their pregnancy (21 to 23 days). We examined in vivo responses of cerebral arterioles in control and PAE male and female offspring (14 to 16 weeks after birth) to activators of potassium channels (Iloprost [BK channels] and pinacidil [KATP channels]), before and following inhibition of oxidative stress with apocynin. RESULTS: We found that PAE impaired dilation of cerebral arterioles in response to activation of potassium channels with iloprost and pinacidil, and this impairment was similar in male and female rats. In addition, treatment with apocynin reversed the impaired vasodilation to iloprost and pinacidil in PAE rats to levels observed in control rats. This effect of apocynin also was similar in male and female rats. CONCLUSIONS: PAE induces dysfunction in the ability of specific potassium channels to dilate cerebral arterioles which appears to be mediated by an increase in oxidative stress. We suggest that these alterations in potassium channel function may contribute to the pathogenesis of cerebral vascular abnormalities and/or behavioral/cognitive deficits observed in fetal alcohol spectrum disorders.


Subject(s)
Prenatal Exposure Delayed Effects , Rats , Female , Male , Pregnancy , Animals , Humans , Pinacidil/pharmacology , Arterioles , Rats, Sprague-Dawley , Large-Conductance Calcium-Activated Potassium Channels/pharmacology , Iloprost/pharmacology , Ethanol/pharmacology , Vasodilation , Oxidative Stress , Adenosine Triphosphate/pharmacology , Vasodilator Agents/pharmacology
2.
Physiol Rep ; 9(21): e15079, 2021 11.
Article in English | MEDLINE | ID: mdl-34713985

ABSTRACT

While it is known that dilation of cerebral arterioles to NOS-dependent agonists is impaired in rats exposed to prenatal alcohol, no studies have examined the influence of prenatal alcohol on constrictor response of cerebral arterioles. Our goal was to determine whether constrictor responses of cerebral resistance arterioles are altered by prenatal exposure to alcohol and if any changes differed as a function of age or sex. We fed Sprague-Dawley rat dams a liquid diet with or without alcohol (3% ethanol) for the duration of their pregnancy. We then examined reactivity of cerebral arterioles to thromboxane (U-46619; 0.01 and 0.1 µM), arginine vasopressin (0.1 and 1 nM), and angiotensin II (1 and 10 µM) in four groups of offspring: control male and female, and prenatal alcohol male and female at two different ages (adolescent: 4-6 weeks old and adult: 14-16 weeks old). Constriction of cerebral arterioles to U-46619 and AVP were similar in male and female rats regardless of exposure to prenatal alcohol and age. Similarly, adolescent male and female rats showed no difference to angiotensin II following prenatal exposure to alcohol. However, alcohol-exposed females exhibited an unexpected dilation to the high concentration of angiotensin II in adulthood, which was absent in males. We suggest that the findings from these studies may have implications regarding the susceptibility of the brain to cerebral ischemic damage. We speculate that impaired vasodilation, coupled with preserved vasoconstriction, can lead to a scenario favoring a decrease in cerebral blood flow during times of increased metabolic demand.


Subject(s)
Arterioles/physiopathology , Cerebral Cortex/blood supply , Fetal Alcohol Spectrum Disorders/physiopathology , Vascular Resistance , Vasoconstriction , Animals , Cerebral Cortex/drug effects , Cerebrovascular Circulation , Ethanol/toxicity , Female , Male , Rats , Rats, Sprague-Dawley , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL
...