Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 181: 110093, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34995841

ABSTRACT

Laser resonance ionization at the RISIKO 30 kV mass separator has been used to produce isotopically and isobarically pure and well quantified 222Rn emanation standards. Based upon laser-spectroscopic preparation studies, ion implantation into aluminum and tungsten targets has been carried out, providing overall implantation efficiencies of 40% up to 60%. The absolute implanted activity of 226Ra was determined by the technique of defined solid-angle α-particle spectrometry, where excellent energy resolution was observed. The 222Rn emanation coefficient of the produced targets was studied using α-particle and γ-ray spectrometry, and yielded results between 0.23 and 0.34, with relative uncertainty on the order of 1%. No dependence exceeding a 1% change of the emanation on humidity could be identified in the range of 15 %rH to 75 %rH, whereas there were hints of a slight correlation between the emanation and temperature. Additionally, and as expected, the emanation coefficient was found to be dependent on the target material as well as the implanted dose.

2.
Sci Adv ; 7(44): eabj1175, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34714671

ABSTRACT

Micrometer-sized pollutant particles are of highest concern in environmental and life sciences, cosmochemistry, and forensics. From their composition, detailed information on origin and potential risks to human health or environment is obtained. We combine secondary ion mass spectrometry with resonant laser ionization to selectively examine elemental and isotopic composition of individual particles at submicrometer spatial resolution. Avoiding any chemical sample preparation, isobaric interferences are suppressed by five orders of magnitude. In contrast to most mass spectrometric techniques, only negligible mass is consumed, leaving the particle intact for further studies. Identification of actinide elements and their isotopes on a Chernobyl hot particle, including 242mAm at ultratrace levels, proved the performance. Beyond that, the technique is applicable to almost all elements and opens up previously unexplored scientific applications.

3.
Phys Rev Lett ; 125(7): 073001, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32857542

ABSTRACT

Two lowest-energy odd-parity atomic levels of actinium, 7s^{2}7p^{2}P_{1/2}^{o}, 7s^{2}7p^{2}P_{3/2}^{o}, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm^{-1}. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to ^{2}P_{3/2}^{o}. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficient laser cooling and ionization schemes for actinium, with possible applications for high-purity medical-isotope production and future fundamental physics experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...