Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 234: 427-437, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31228845

ABSTRACT

Water pollution by pesticides and other chemical contaminants is a subject of major importance due to the risk for human health and the environment. The search for remediation processes able to withdraw chemical contaminants from water and to allows water reuse is an urgent need. Herein, a simple and cheap system for pesticides removal was constructed and evaluated using water samples contaminated with two widely used herbicides (imazapic and imazethapyr, at g L-1 level). Operation parameters and process efficiency, in terms of removal rate in the reclaimed water and degradation rate of pesticides in the dry residue, were quantitatively determined. The model was tested in real-world field experiments and was able to remove more than 99.95% of both contaminants from a 10 L solution containing 4.16 ±â€¯0.94 g of imazethapyr and 1.31 ±â€¯0.17 g of imazapic, generating reusable water with minimum volume loss (<2.5%). Liquid chromatography coupled to mass spectrometry was used to determine the herbicides content in all samples and to estimate the degree of degradation of the substances as well as the occurrence of transformation products of imazapic and imazethapyr. The system efficiency in removing contaminants of emerging concern from surface water was also evaluated. The process have generated output water with undetected levels for two fungicides present in a local river in Southern Brazil.


Subject(s)
Pesticides/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/instrumentation , Brazil , Chromatography, Liquid/methods , Imidazoles/isolation & purification , Mass Spectrometry/methods , Nicotinic Acids/isolation & purification , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Purification/economics , Water Purification/methods
2.
Sci Total Environ ; 653: 597-604, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30414588

ABSTRACT

Brazilian environmental legislation obliges the aeroagriculture operators to treat the effluents generated after aircraft washing. This effluent commonly contains high levels of pesticides (g L-1) with potential to produce point source pollution. In the present study, we evaluated the efficiency of two systems on the removal of the fungicides epoxiconazole and pyraclostrobin from these effluents. The first system is based on ozonation and is currently suggested by regulatory authority. The second system is based on a pyramid-shaped solar still. The pesticides removal was monitored using liquid chromatography mass spectrometry to determine the mass quantity of both molecules throughout the treatment. After treatment with ozone treatment, the total mass of epoxiconazole decreased by 73% and pyraclostrobin decreased by 90.8%. The solar distillation system removed epoxiconazole and pyraclostrobin by >99.995 and 99.99%, respectively. The both systems proved to be efficient in the treatment of effluent containing residues of the fungicide Opera®, a formulation containing epoxiconazole and pyraclostrobin. The solar distillation system showed a higher degree of removal and presents the advantage of operating without energy sources, reagents or consumables.

SELECTION OF CITATIONS
SEARCH DETAIL
...