Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(24): e2201660, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35754312

ABSTRACT

The high-frequency and low-voltage operation of organic thin-film transistors (OTFTs) is a key requirement for the commercial success of flexible electronics. Significant progress has been achieved in this regard by several research groups highlighting the potential of OTFTs to operate at several tens or even above 100 MHz. However, technology maturity, including scalability, integrability, and device reliability, is another crucial point for the semiconductor industry to bring OTFT-based flexible electronics into mass production. These requirements are often not met by high-frequency OTFTs reported in the literature as unconventional processes, such as shadow-mask patterning or alignment with unrealistic tolerances for production, are used. Here, ultra-short channel vertical organic field-effect transistors (VOFETs) with a unity current gain cut-off frequency (fT ) up to 43.2 MHz (or 4.4 MHz V-1 ) operating below 10 V are shown. Using state-of-the-art manufacturing techniques such as photolithography with reliable fabrication procedures, the integration of such devices down to the size of only 12 × 6 µm2 is shown, which is important for the adaption of this technology in high-density circuits (e.g., display driving). The intrinsic channel transconductance is analyzed and demonstrates that the frequencies up to 430 MHz can be reached if the parasitic electrode overlap is minimized.

2.
J Phys Chem Lett ; 10(14): 4025-4031, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31259561

ABSTRACT

We demonstrate high-mobility solution-processed inorganic field-effect transistors (FETs) with ultra-short channel (USC) length using semiconductor CdSe nanocrystals (NCs). Capping of the NCs with hybrid inorganic-organic CdCl3--butylamine ligands enables coarsening of the NCs during annealing at a moderate temperature, resulting in the devices having good transport characteristics with electron mobilities in the saturation regime reaching 8 cm2 V-1 s-1. Solution-based processing of the NCs and fabrication of thin films involve neither harsh conditions nor the use of hydrazine. Employing photolithographic methods, we fabricated FETs with a vertical overlap of source and drain electrodes to achieve a submicrometer channel length. To the best of our knowledge, this is the first report on an USC FET based on colloidal semiconductor NCs. Because of a short channel length, the FETs show a normalized transconductance of 4.2 m V-1 s-1 with a high on/off ratio of 105.

3.
Nanoscale ; 11(41): 19370-19379, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31173035

ABSTRACT

In this work, we present a new synthetic approach to colloidal PbS nanoplatelets (NPLs) utilizing a cation exchange (CE) strategy starting from CuS NPLs synthesized via the hot-injection method. Whereas the thickness of the resulting CuS NPLs was fixed at approx. 5 nm, the lateral size could be tuned by varying the reaction conditions, such as time from 6 to 16 h, the reaction temperature (120 °C, 140 °C), and the amount of copper precursor. In a second step, Cu+ cations were replaced with Pb2+ ions within the crystal lattice via CE. While the shape and the size of parental CuS platelets were preserved, the crystal structure was rearranged from hexagonal covellite to PbS galena, accompanied by the fragmentation of the monocrystalline phase into polycrystalline one. Afterwards a halide mediated ligand exchange (LE) was carried out in order to remove insulating oleic acid residues from the PbS NPL surface and to form stable dispersions in polar organic solvents enabling thin-film fabrication. Both CE and LE processes were monitored by several characterization techniques. Furthermore, we measured the electrical conductivity of the resulting PbS NPL-based films before and after LE and compared the processing in ambient to inert atmosphere. Finally, we fabricated field-effect transistors with an on/off ratio of up to 60 and linear charge carrier mobility for holes of 0.02 cm2 V-1 s-1.

4.
Nanoscale ; 7(6): 2777-83, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25584968

ABSTRACT

We present a novel top-electrode spray-coating process for the solution-based deposition of silver nanowires (AgNWs) onto vacuum-processed small molecule organic electronic solar cells. The process is compatible with organic light emitting diodes (OLEDs) and organic light emitting thin film transistors (OLETs) as well. By modifying commonly synthesized AgNWs with a perfluorinated methacrylate, we are able to disperse these wires in a highly fluorinated solvent. This solvent does not dissolve most organic materials, enabling a top spray-coating process for sensitive small molecule and polymer-based devices. The optimized preparation of the novel AgNW dispersion and spray-coating at only 30 °C leads to high performance electrodes directly after the deposition, exhibiting a sheet resistance of 10.0 Ω â–¡(-1) at 87.4% transparency (80.0% with substrate). By spraying our novel AgNW dispersion in air onto the vacuum-processed organic p-i-n type solar cells, we obtain working solar cells with a power conversion efficiency (PCE) of 1.23%, compared to the air exposed reference devices employing thermally evaporated thin metal layers as the top-electrode.

SELECTION OF CITATIONS
SEARCH DETAIL
...