Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6216, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486034

ABSTRACT

Products containing chemicals with eye irritation potential need to be labeled with the respective hazard symbol. To avoid the testing of numerous dilutions of chemicals on animals, their labeling is directed by a theoretical approach. In this report, a previously described in vitro tissue model of the cornea based on human epithelial cells was used for eye irritation testing of dilutions. As a sensitive and non-destructive method to analyze the barrier function of the epithelium, impedance spectroscopy was applied. Moreover, the morphology and viability of the epithelial models were assessed. We tested four chemicals that, neatly, cause severe damage to the eye: tetrahydrofuran, acetic acid, diethylethanolamine, and benzalkonium chloride. With our test method, we were able to determine the concentrations of the chemicals which are critical for the integrity of the cornea. The threshold was < 0.1% for the most and > 5% for the least toxic substance. The described test system is not only an alternative for animal models but also for the theoretical examination of the hazard potential of diluted chemicals. By using the advantages of tissue engineering and non-destructive analysis tools, we can achieve more precise and safer labeling of the eye irritation potential of products.


Subject(s)
Animal Testing Alternatives , Irritants , Animals , Humans , Electric Impedance , Irritants/toxicity , Animal Testing Alternatives/methods , Cornea , Epithelium
2.
Int J Pharm ; 616: 121513, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35085733

ABSTRACT

Liquid and semi-solid formulations are the most commonly used drug delivery systems for ophthalmic diseases. Upon application into the conjunctival sac, these systems introduce a variable and unphysiologically high liquid volume to the eye, resulting in overflow and extensive nasolacrimal drainage, accounting for dosing inaccuracy and short ocular residence time. In this study, we present nanofibrous electrospun scaffolds composed of biocompatible polymers, overcoming these challenges by immediate drug release. The fibers incorporate gentamicin and dexamethasone, intended for the treatment of bacterial conjunctivitis. Upon contact with the ocular surface, the nanofibers immediately dissolve in the tear fluid, quantitatively releasing the two actives, yielding over92% drug recovery, determined with fluorimetric and chromatographic quantifications methods. Simultaneously, the viscosity of the tear fluid increases, shown by complex viscometry measurements. A newly developed ex vivo microfluidic porcine cornea model was used to evaluated ocular residence time. In contrast to fluid eye drops, the contact time was significantly prolonged and 20 min after application, an increase in drug availability on the ocular surface of 342% was observed. Biocompatibility of the polymer system was demonstrated in an OECD approved in vitro cornea model. The antibacterial activity after processing was evaluated according to EUCAST guidelines, and storage stability of the system was confirmed over a 12-week period. This innovative drug delivery system poses a highly promising platform technology, overcoming challenges associated with conventional dosage forms for drug delivery to the anterior eye and thus significantly advancing therapeutic approaches.


Subject(s)
Nanofibers , Animals , Biological Availability , Cornea , Drug Delivery Systems/methods , Nanofibers/chemistry , Ophthalmic Solutions/chemistry , Swine , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...