Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 8(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255178

ABSTRACT

The relapsing fever group Borrelia miyamotoi is an emerging tick-borne pathogen. Diagnosis of infection is currently mainly based on serological methods detecting antibodies against B. miyamotoi glycerophosphodiester phosphodiesterase (GlpQ). Here, we scrutinized the reliability of GlpQ as a diagnostic marker and compared the seroprevalence in different study populations and by applying various immunoblotting methods. Antibodies were detected in the sera of 7/53 hunters and in 1/11 sera of Lyme neuroborreliosis patients. Furthermore, 17/74 sera of persons with high concentrations of anti-Borrelia burgdorferi sensu lato (α-Bbsl) antibodies reacted strongly with B. miyamotoi GlpQ in immunoblots. The B. miyamotoi GlpQ seroprevalence was 7/50 in α-Bbsl negative persons. In healthy blood donors from commercial suppliers and from the Austrian Red Cross, seroprevalences were 5/14 and 10/35, respectively. Strikingly, two B. miyamotoi PCR-positive cases from Austria had negative GlpQ serology, indicating poor sensitivity. Finally, when we analyzed sera of dogs, we found α-B. miyamotoi GlpQ antibody seroprevalence in tick-free dogs (n = 10) and in tick-exposed dogs (n = 19) with 2/10 and 8/19, respectively. Thus, our results indicate that GlpQ-based B. miyamotoi serology holds neither specificity nor sensitivity.

2.
Biomacromolecules ; 19(12): 4641-4649, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30433766

ABSTRACT

In bioanalytical applications, many coating strategies have been established for so-called "blocking" of the surfaces. However, most of the procedures developed so far require additional processing steps for surface blocking and small variations in the blocking efficiency result in increased background noise, which lowers the overall sensitivity of an assay. In this study, we demonstrate the preparation of a bioanalytical surface with a thin film of a photo-cross-linkable copolymer that is transformed photochemically into a surface-attached hydrogel network. The presented coating is directly applicable to various plastic substrates that are used for bioassays without the need for any prior surface modification. Such a strategy allows facile one-step immobilization of biomolecules for bioanalysis and protein-repellent properties for avoiding unspecific adsorption of analyte molecules during the assay. The protein adsorption behavior of the hydrogel-coated and blank surfaces is measured by SPR with human serum and physisorption of labeled detection antibodies. We show that the hydrogel surfaces used lower unspecific background signals and background noise and thus increase the sensitivities of the microarray immunoassays.


Subject(s)
Hydrogels/chemistry , Immunoassay/methods , Microarray Analysis/methods , Proteins/immunology , Adsorption/drug effects , Humans , Polymers/chemistry , Proteins/chemistry , Serologic Tests , Substrate Specificity , Surface Properties
3.
Eng Life Sci ; 17(10): 1078-1087, 2017 Oct.
Article in English | MEDLINE | ID: mdl-32624735

ABSTRACT

Lyme disease is the most common tick-borne infectious disease in Europe and North America. Previous studies discovered the immunogenic role of a surface-exposed lipoprotein (VlsE) of Borreliella burgdorferi. We employed high density peptide arrays to investigate the antibody response to the VlsE protein in VlsE-positive patients by mapping the protein as overlapping peptides and subsequent in-depth epitope substitution analyses. These investigations led to the identification of antibody fingerprints represented by a number of key residues that are indispensable for the binding of the respective antibody. This approach allows us to compare the antibody specificities of different patients to the resolution of single amino acids. Our study revealed that the sera of VlsE-positive patients recognize different epitopes on the protein. Remarkably, in those cases where the same epitope is targeted, the antibody fingerprint is almost identical. Furthermore, we could correlate two fingerprints with human autoantigens and an Epstein-Barr virus epitope; yet, the link to autoimmune disorders seems unlikely and must be investigated in further studies. The other three fingerprints are much more specific for B. burgdorferi. Since antibody fingerprints of longer sequences have proven to be highly disease specific, our findings suggest that the fingerprints could function as diagnostic markers that can reduce false positive test results.

SELECTION OF CITATIONS
SEARCH DETAIL
...