Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(15): eadf7001, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608030

ABSTRACT

Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in 16p11.2 deletion models. We show that TAOK2 associates with the translational machinery and functions as a translational brake by phosphorylating eukaryotic elongation factor 2 (eEF2). Previously, all signal-mediated regulation of translation elongation via eEF2 phosphorylation was believed to be mediated by a single kinase, eEF2K. However, we show that TAOK2 can directly phosphorylate eEF2 on the same regulatory site, but functions independently of eEF2K signaling. Collectively, our results reveal an eEF2K-independent signaling pathway for control of translation elongation and suggest altered translation as a molecular component in the etiology of some forms of ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Ursidae , Animals , Mice , Autistic Disorder/genetics , Peptide Elongation Factor 2 , Phosphorylation , Autism Spectrum Disorder/genetics , Biological Assay
2.
J Neurosci ; 44(13)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38050126

ABSTRACT

Dynamic microtubules critically regulate synaptic functions, but the role of microtubule severing in these processes is barely understood. Katanin is a neuronally expressed microtubule-severing complex regulating microtubule number and length in cell division or neurogenesis; however, its potential role in synaptic functions has remained unknown. Studying mice from both sexes, we found that katanin is abundant in neuronal dendrites and can be detected at individual excitatory spine synapses. Overexpression of a dominant-negative ATPase-deficient katanin subunit to functionally inhibit severing alters the growth of microtubules in dendrites, specifically at premature but not mature neuronal stages without affecting spine density. Notably, interference with katanin function prevented structural spine remodeling following single synapse glutamate uncaging and significantly affected the potentiation of AMPA-receptor-mediated excitatory currents after chemical induction of long-term potentiation. Furthermore, katanin inhibition reduced the invasion of microtubules into fully developed spines. Our data demonstrate that katanin-mediated microtubule severing regulates structural and functional plasticity at synaptic sites.


Subject(s)
Microtubules , Neurons , Animals , Mice , Katanin/genetics , Katanin/metabolism , Microtubules/metabolism , Neurons/physiology , Neurogenesis , Neuronal Plasticity
3.
Front Behav Neurosci ; 17: 1288509, 2023.
Article in English | MEDLINE | ID: mdl-38025382

ABSTRACT

Introduction: The dopaminergic system plays a key role in the appropriate functioning of the central nervous system, where it is essential for emotional balance, arousal, reward, and motor control. The cell adhesion molecule close homolog of L1 (CHL1) contributes to dopaminergic system development, and CHL1 and the dopamine receptor D2 (D2R) are associated with mental disorders like schizophrenia, addiction, autism spectrum disorder and depression. Methods: Here, we investigated how the interplay between CHL1 and D2R affects the behavior of young adult male and female wild-type (CHL+/+) and CHL1-deficient (CHL1-/-) mice, when D2R agonist quinpirole and antagonist sulpiride are applied. Results: Low doses of quinpirole (0.02 mg/kg body weight) induced hypolocomotion of CHL1+/+ and CHL1-/- males and females, but led to a delayed response in CHL1-/- mice. Sulpiride (1 mg/kg body weight) affected locomotion of CHL1-/- females and social interaction of CHL1+/+ females as well as social interactions of CHL1-/- and CHL1+/+ males. Quinpirole increased novelty-seeking behavior of CHL1-/- males compared to CHL1+/+ males. Vehicle-treated CHL1-/- males and females showed enhanced working memory and reduced stress-related behavior. Discussion: We propose that CHL1 regulates D2R-dependent functions in vivo. Deficiency of CHL1 leads to abnormal locomotor activity and emotionality, and to sex-dependent behavioral differences.

4.
Dev Cell ; 58(23): 2641-2651.e6, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37890489

ABSTRACT

Choroid plexuses (ChPs) produce cerebrospinal fluid and sense non-cell-autonomous stimuli to control the homeostasis of the central nervous system. They are mainly composed of epithelial multiciliated cells, whose development and function are still controversial. We have thus characterized the stepwise order of mammalian ChP epithelia cilia formation using a combination of super-resolution-microscopy approaches and mouse genetics. We show that ChP ciliated cells are built embryonically on a treadmill of spatiotemporally regulated events, starting with atypical centriole amplification and ending with the construction of nodal-like 9+0 cilia, characterized by both primary and motile features. ChP cilia undergo axoneme resorption at early postnatal stages through a microtubule destabilization process controlled by the microtubule-severing enzyme spastin and mitigated by polyglutamylation levels. Notably, this phenotype is preserved in humans, suggesting a conserved ciliary resorption mechanism in mammals.


Subject(s)
Axoneme , Cilia , Humans , Mice , Animals , Cilia/physiology , Epithelial Cells/physiology , Epithelium , Choroid , Mammals
5.
Cell Rep ; 42(7): 112743, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37418322

ABSTRACT

Homeostatic synaptic plasticity adjusts the strength of synapses to restrain neuronal activity within a physiological range. Postsynaptic guanylate kinase-associated protein (GKAP) controls the bidirectional synaptic scaling of AMPA receptors (AMPARs); however, mechanisms by which chronic activity triggers cytoskeletal remodeling to downscale synaptic transmission are barely understood. Here, we report that the microtubule-dependent kinesin motor Kif21b binds GKAP and likewise is located in dendritic spines in a myosin Va- and neuronal-activity-dependent manner. Kif21b depletion unexpectedly alters actin dynamics in spines, and adaptation of actin turnover following chronic activity is lost in Kif21b-knockout neurons. Consistent with a role of the kinesin in regulating actin dynamics, Kif21b overexpression promotes actin polymerization. Moreover, Kif21b controls GKAP removal from spines and the decrease of GluA2-containing AMPARs from the neuronal surface, thereby inducing homeostatic synaptic downscaling. Our data highlight a critical role of Kif21b at the synaptic actin cytoskeleton underlying homeostatic scaling of neuronal firing.


Subject(s)
Actins , Kinesins , Actins/metabolism , Kinesins/metabolism , Neurons/metabolism , Neuronal Plasticity/physiology , Synapses/metabolism , Myosins/metabolism , Dendritic Spines/metabolism
6.
Biomolecules ; 13(5)2023 04 29.
Article in English | MEDLINE | ID: mdl-37238646

ABSTRACT

Adhesion molecules play major roles in cell proliferation, migration, survival, neurite outgrowth and synapse formation during nervous system development and in adulthood. The neural cell adhesion molecule L1 contributes to these functions during development and in synapse formation and synaptic plasticity after trauma in adulthood. Mutations of L1 in humans result in L1 syndrome, which is associated with mild-to-severe brain malformations and mental disabilities. Furthermore, mutations in the extracellular domain were shown to cause a severe phenotype more often than mutations in the intracellular domain. To explore the outcome of a mutation in the extracellular domain, we generated mice with disruption of the dibasic sequences RK and KR that localize to position 858RKHSKR863 in the third fibronectin type III domain of murine L1. These mice exhibit alterations in exploratory behavior and enhanced marble burying activity. Mutant mice display higher numbers of caspase 3-positive neurons, a reduced number of principle neurons in the hippocampus, and an enhanced number of glial cells. Experiments suggest that disruption of the dibasic sequence in L1 results in subtle impairments in brain structure and functions leading to obsessive-like behavior in males and reduced anxiety in females.


Subject(s)
Fibronectins , Neural Cell Adhesion Molecule L1 , Animals , Female , Male , Mice , Fibronectins/genetics , Fibronectins/metabolism , Gliosis/metabolism , Hippocampus/metabolism , Neural Cell Adhesion Molecule L1/genetics , Neural Cell Adhesion Molecule L1/metabolism , Neurons/metabolism
7.
J Gen Physiol ; 155(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36809486

ABSTRACT

KCNQ1 voltage-gated K+ channels are involved in a wide variety of fundamental physiological processes and exhibit the unique feature of being markedly inhibited by external K+. Despite the potential role of this regulatory mechanism in distinct physiological and pathological processes, its exact underpinnings are not well understood. In this study, using extensive mutagenesis, molecular dynamics simulations, and single-channel recordings, we delineate the molecular mechanism of KCNQ1 modulation by external K+. First, we demonstrate the involvement of the selectivity filter in the external K+ sensitivity of the channel. Then, we show that external K+ binds to the vacant outermost ion coordination site of the selectivity filter inducing a diminution in the unitary conductance of the channel. The larger reduction in the unitary conductance compared to whole-cell currents suggests an additional modulatory effect of external K+ on the channel. Further, we show that the external K+ sensitivity of the heteromeric KCNQ1/KCNE complexes depends on the type of associated KCNE subunits.


Subject(s)
KCNQ1 Potassium Channel , Potassium Channels, Voltage-Gated , KCNQ1 Potassium Channel/metabolism , Potassium Channels, Voltage-Gated/metabolism , Molecular Dynamics Simulation , Oocytes/metabolism , Patch-Clamp Techniques
8.
Front Cell Dev Biol ; 10: 987691, 2022.
Article in English | MEDLINE | ID: mdl-36518539

ABSTRACT

Hearing impairment is one of the most common disorders with a global burden and increasing prevalence in an ever-aging population. Previous research has largely focused on peripheral sensory perception, while the brain circuits of auditory processing and integration remain poorly understood. Mutations in the rdx gene, encoding the F-actin binding protein radixin (Rdx), can induce hearing loss in human patients and homozygous depletion of Rdx causes deafness in mice. However, the precise physiological function of Rdx in hearing and auditory information processing is still ill-defined. Here, we investigated consequences of rdx monoallelic loss in the mouse. Unlike the homozygous (-/-) rdx knockout, which is characterized by the degeneration of actin-based stereocilia and subsequent hearing loss, our analysis of heterozygous (+/-) mutants has revealed a different phenotype. Specifically, monoallelic loss of rdx potentiated the startle reflex in response to acoustic stimulation of increasing intensities, suggesting a gain of function relative to wildtype littermates. The monoallelic loss of the rdx gene also facilitated pre-pulse inhibition of the acoustic startle reflex induced by weak auditory pre-pulse stimuli, indicating a modification to the circuit underlying sensorimotor gating of auditory input. However, the auditory brainstem response (ABR)-based hearing thresholds revealed a mild impairment in peripheral sound perception in rdx (+/-) mice, suggesting minor aberration of stereocilia structural integrity. Taken together, our data suggest a critical role of Rdx in the top-down processing and/or integration of auditory signals, and therefore a novel perspective to uncover further Rdx-mediated mechanisms in central auditory information processing.

9.
Nat Commun ; 13(1): 6376, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289226

ABSTRACT

Mice display signs of fear when neurons that express cFos during fear conditioning are artificially reactivated. This finding gave rise to the notion that cFos marks neurons that encode specific memories. Here we show that cFos expression patterns in the mouse dentate gyrus (DG) change dramatically from day to day in a water maze spatial learning paradigm, regardless of training level. Optogenetic inhibition of neurons that expressed cFos on the first training day affected performance days later, suggesting that these neurons continue to be important for spatial memory recall. The mechanism preventing repeated cFos expression in DG granule cells involves accumulation of ΔFosB, a long-lived splice variant of FosB. CA1 neurons, in contrast, repeatedly expressed cFos. Thus, cFos-expressing granule cells may encode new features being added to the internal representation during the last training session. This form of timestamping is thought to be required for the formation of episodic memories.


Subject(s)
Dentate Gyrus , Spatial Learning , Animals , Mice , Dentate Gyrus/physiology , Hippocampus , Neurons/metabolism , Spatial Memory
10.
Cell Mol Life Sci ; 79(11): 575, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36309617

ABSTRACT

Microtubules are dynamic polymers of α/ß-tubulin. They regulate cell structure, cell division, cell migration, and intracellular transport. However, functional contributions of individual tubulin isotypes are incompletely understood. The neuron-specific ß-tubulin Tubb3 displays highest expression around early postnatal periods characterized by exuberant synaptogenesis. Although Tubb3 mutations are associated with neuronal disease, including abnormal inhibitory transmission and seizure activity in patients, molecular consequences of altered Tubb3 levels are largely unknown. Likewise, it is unclear whether neuronal activity triggers Tubb3 expression changes in neurons. In this study, we initially asked whether chemical protocols to induce long-term potentiation (cLTP) affect microtubule growth and the expression of individual tubulin isotypes. We found that growing microtubules and Tubb3 expression are sensitive to changes in neuronal activity and asked for consequences of Tubb3 downregulation in neurons. Our data revealed that reduced Tubb3 levels accelerated microtubule growth in axons and dendrites. Remarkably, Tubb3 knockdown induced a specific upregulation of Tubb4 gene expression, without changing other tubulin isotypes. We further found that Tubb3 downregulation reduces tubulin polyglutamylation, increases KIF5C motility and boosts the transport of its synaptic cargo N-Cadherin, which is known to regulate synaptogenesis and long-term potentiation. Due to the large number of tubulin isotypes, we developed and applied a computational model based on a Monte Carlo simulation to understand consequences of tubulin expression changes in silico. Together, our data suggest a feedback mechanism with neuronal activity regulating tubulin expression and consequently microtubule dynamics underlying the delivery of synaptic cargoes.


Subject(s)
Kinesins , Tubulin , Humans , Tubulin/genetics , Tubulin/metabolism , Kinesins/genetics , Microtubules/metabolism , Neurons/metabolism , Axons/metabolism
11.
Nat Commun ; 13(1): 4192, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35858909

ABSTRACT

Dissociation of hyper-phosphorylated Tau from neuronal microtubules and its pathological aggregates, are hallmarks in the etiology of tauopathies. The Tau-microtubule interface is subject to polyglutamylation, a reversible posttranslational modification, increasing negative charge at tubulin C-terminal tails. Here, we asked whether tubulin polyglutamylation may contribute to Tau pathology in vivo. Since polyglutamylases modify various proteins other than tubulin, we generated a knock-in mouse carrying gene mutations to abolish Tuba4a polyglutamylation in a substrate-specific manner. We found that Tuba4a lacking C-terminal polyglutamylation prevents the binding of Tau and GSK3 kinase to neuronal microtubules, thereby strongly reducing phospho-Tau levels. Notably, crossbreeding of the Tuba4a knock-in mouse with the hTau tauopathy model, expressing a human Tau transgene, reversed hyper-phosphorylation and oligomerization of Tau and normalized microglia activation in brain. Our data highlight tubulin polyglutamylation as a potential therapeutic strategy in fighting tauopathies.


Subject(s)
Tauopathies , Tubulin , Animals , Glycogen Synthase Kinase 3/metabolism , Humans , Mice , Microglia/metabolism , Microtubules/metabolism , Phosphorylation , Tauopathies/metabolism , Tubulin/genetics , Tubulin/metabolism , tau Proteins/genetics , tau Proteins/metabolism
12.
Commun Biol ; 5(1): 589, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705737

ABSTRACT

Muskelin (Mkln1) is implicated in neuronal function, regulating plasma membrane receptor trafficking. However, its influence on intrinsic brain activity and corresponding behavioral processes remains unclear. Here we show that murine Mkln1 knockout causes non-habituating locomotor activity, increased exploratory drive, and decreased locomotor response to amphetamine. Muskelin deficiency impairs social novelty detection while promoting the retention of spatial reference memory and fear extinction recall. This is strongly mirrored in either weaker or stronger resting-state functional connectivity between critical circuits mediating locomotor exploration and cognition. We show that Mkln1 deletion alters dendrite branching and spine structure, coinciding with enhanced AMPAR-mediated synaptic transmission but selective impairment in synaptic potentiation maintenance. We identify muskelin at excitatory synapses and highlight its role in regulating dendritic spine actin stability. Our findings point to aberrant spine actin modulation and changes in glutamatergic synaptic function as critical mechanisms that contribute to the neurobehavioral phenotype arising from Mkln1 ablation.


Subject(s)
Actins , Extinction, Psychological , Actins/metabolism , Animals , Brain/metabolism , Cognition , Fear , Mice
13.
Hum Mol Genet ; 31(11): 1844-1859, 2022 06 04.
Article in English | MEDLINE | ID: mdl-34935948

ABSTRACT

Hereditary spastic paraplegia (HSP) is a disease in which dieback degeneration of corticospinal tracts, accompanied by axonal swellings, leads to gait deficiencies. SPG4-HSP, the most common form of the disease, results from mutations of human spastin gene (SPAST), which is the gene that encodes spastin, a microtubule-severing protein. The lack of a vertebrate model that recapitulates both the etiology and symptoms of SPG4-HSP has stymied the development of effective therapies for the disease. hSPAST-C448Y mice, which express human mutant spastin at the ROSA26 locus, display corticospinal dieback and gait deficiencies but not axonal swellings. On the other hand, mouse spastin gene (Spast)-knockout (KO) mice display axonal swellings but not corticospinal dieback or gait deficiencies. One possibility is that reduced spastin function, resulting in axonal swellings, is not the cause of the disease but exacerbates the toxic effects of the mutant protein. To explore this idea, Spast-KO and hSPAST-C448Y mice were crossbred, and the offspring were compared with the parental lines via histological and behavioral analyses. The crossbred animals displayed axonal swellings as well as earlier onset, worsened gait deficiencies and corticospinal dieback compared with the hSPAST-C448Y mouse. These results, together with observations on changes in histone deacetylases 6 and tubulin modifications in the axon, indicate that each of these three transgenic mouse lines is valuable for investigating a different component of the disease pathology. Moreover, the crossbred mice are the best vertebrate model to date for testing potential therapies for SPG4-HSP.


Subject(s)
Spastic Paraplegia, Hereditary , Spastin , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Gain of Function Mutation , Humans , Loss of Function Mutation , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Spastin/genetics
14.
Cell Rep ; 36(5): 109499, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34348158

ABSTRACT

The synaptic removal of AMPA-type glutamate receptors (AMPARs) is a core mechanism for hippocampal long-term depression (LTD). In this study, we address the role of microtubule-dependent transport of AMPARs as a driver for vesicular trafficking and sorting during LTD. Here, we show that the kinesin-1 motor KIF5A/C is strictly required for LTD expression in CA3-to-CA1 hippocampal synapses. Specifically, we find that KIF5 is required for an efficient internalization of AMPARs after NMDA receptor activation. We show that the KIF5/AMPAR complex is assembled in an activity-dependent manner and associates with microsomal membranes upon LTD induction. This interaction is facilitated by the vesicular adaptor protrudin, which is also required for LTD expression. We propose that protrudin links KIF5-dependent transport to endosomal sorting, preventing AMPAR recycling to synapses after LTD induction. Therefore, this work identifies an activity-dependent molecular motor and the vesicular adaptor protein that executes AMPAR synaptic removal during LTD.


Subject(s)
Kinesins/metabolism , Long-Term Synaptic Depression , Receptors, AMPA/metabolism , Synapses/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cell Membrane/metabolism , Dyneins/metabolism , Female , Male , Protein Transport , Rats, Wistar
15.
iScience ; 24(5): 102416, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33997696

ABSTRACT

Protein transport toward the nucleus is important for translating molecular signals into gene expression changes. Interestingly, the unconventional motor protein myosin VI regulates RNA polymerase II-dependent gene transcription. Whether actin-filament-dependent myosins are actively transported to nuclear compartments remains unknown. Here, we report that neurons also contain myosin VI inside their nucleus. Notably, nuclear appearance of this actin-dependent motor depends on functional cytoplasmic dynein, a minus end-directed microtubule motor. We find that the trafficking factor muskelin assists in the formation of dynein-myosin VI interactions and further localizes to nuclear foci, enriched in the myosin. Impairment of dynein, but not myosin VI function, reduces nuclear muskelin levels. In turn, muskelin represents a critical determinant in regulating myosin VI nuclear targeting. Our data reveal that minus end-directed microtubule transport determines myosin VI subcellular localization. They suggest a pathway of cytoplasm-to-nucleus trafficking that requires muskelin and is based on dynein-myosin cross talk.

16.
Neuron ; 109(10): 1754-1754.e1, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34015268

ABSTRACT

Neuronal function relies on tightly controlled cytoskeleton transport with adaptive cargo trafficking as prerequisite for synaptic transmission. During inflammation in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), axonal transport efficiency declines, followed by neurodegeneration. Furthermore, neuroinflammation causes an imbalance between excitatory and inhibitory transmission, triggering synaptic dysfunction and loss. Recent data suggest that neuronal transport and synaptic deficits during neuroinflammation are functionally interconnected. To view this SnapShot, open or download the PDF.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/physiopathology , Multiple Sclerosis/physiopathology , Neurons/physiology , Animals , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Multiple Sclerosis/immunology , Neurons/immunology , Synaptic Transmission
17.
J Adv Res ; 29: 95-106, 2021 03.
Article in English | MEDLINE | ID: mdl-33842008

ABSTRACT

Introduction: The inhibitory glycine receptor (GlyR), a mediator of fast synaptic inhibition, is located and held at neuronal synapses through the anchoring proteins gephyrin and collybistin. Stable localization of neurotransmitter receptors is essential for synaptic function. In case of GlyRs, only beta subunits were known until now to mediate synaptic anchoring. Objectives: We identified a poly-proline II helix (PPII) in position 365-373 of the intra-cellular TM3-4 loop of the human GlyRα1 subunit as a novel potential synaptic anchoring site. The potential role of the PPII helix as synaptic anchoring site was tested. Methods: Glycine receptors and collybistin variants were generated and recombinantly expressed in HEK293 cells and cultured neurons. Receptor function was assessed using patch-clamp electrophysiology, protein-protein interaction was studied using co-immuno-precipitation and pulldown experiments. Results: Recombinantly expressed collybistin bound to isolated GlyRα1 TM3-4 loops in GST-pulldown assays. When the five proline residues P365A, P366A, P367A, P369A, P373A (GlyRα1P1-5A) located in the GlyRα1-PPII helix were replaced by alanines, the PPII secondary structure was disrupted. Recombinant GlyRα1P1-5A mutant subunits displayed normal cell surface expression and wildtype-like ion channel function, but binding to collybistin was abolished. The GlyRα1-collybistin interaction was independently confirmed by o-immunoprecipitation assays using full-length GlyRα1 subunits. Surprisingly, the interaction was not mediated by the SH3 domain of collybistin, but by its Pleckstrin homology (PH) domain. The mutation GlyRα1P366L, identified in a hyperekplexia patient, is also disrupting the PPII helix, and caused reduced collybistin binding. Conclusion: Our data suggest a novel interaction between α1 GlyR subunits and collybistin, which is physiologically relevant in vitro and in vivo and may contribute to postsynaptic anchoring of glycine receptors.


Subject(s)
Proline/metabolism , Receptors, Glycine/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Synapses/metabolism , HEK293 Cells , Humans , Hyperekplexia/genetics , Hyperekplexia/metabolism , Membrane Proteins/metabolism , Mutation , Neurons/metabolism , Pleckstrin Homology Domains , Proline-Rich Protein Domains , Protein Binding , Protein Structure, Secondary , Receptors, Glycine/genetics , src Homology Domains
18.
J Cell Biol ; 220(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33538762

ABSTRACT

Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon-glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch-specific fine-tuning mechanism that locally coordinates axon remodeling and myelination.


Subject(s)
Axons , Motor Neurons/metabolism , Myelin Sheath/metabolism , Animals , Mice , Mice, Transgenic , Synaptic Transmission
19.
Dev Neurobiol ; 81(3): 333-350, 2021 04.
Article in English | MEDLINE | ID: mdl-32293117

ABSTRACT

Alpha- and beta-tubulin dimers polymerize into protofilaments that associate laterally to constitute a hollow tube, the microtubule. A dynamic network of interlinking filaments forms the microtubule cytoskeleton, which maintains the structure of cells and is key to various cellular processes including cell division, cell migration, and intracellular transport. Individual microtubules have an identity that depends on the differential integration of specific alpha- and beta-tubulin isotypes and is further specified by a variety of posttranslational modifications (PTMs). It is barely understood to which extent neighboring microtubules differ in their tubulin composition or whether specific tubulin isotypes cluster along the polymer. Furthermore, our knowledge about the spatio-temporal expression patterns of tubulin isotypes is limited, not at least due to the lack of antibodies or antibody cross-reactivities. Here, we asked which alpha- and beta-tubulin mRNAs and proteins are expressed in developing hippocampal neuron cultures and ex vivo brain tissue lysates. Using heterologous expression of GFP-tubulin fusion proteins, we systematically tested antibody-specificities against various tubulin isotypes. Our data provide quantitative information about tubulin expression levels in the mouse brain and classify tubulin isotypes during pre- and postnatal development.


Subject(s)
Microtubules , Tubulin , Animals , Brain/metabolism , Cytoskeleton/metabolism , Mice , Microtubules/metabolism , RNA, Messenger/metabolism , Tubulin/metabolism
20.
PLoS Biol ; 18(8): e3000820, 2020 08.
Article in English | MEDLINE | ID: mdl-32866173

ABSTRACT

Mutations in the gene encoding the microtubule-severing protein spastin (spastic paraplegia 4 [SPG4]) cause hereditary spastic paraplegia (HSP), associated with neurodegeneration, spasticity, and motor impairment. Complicated forms (complicated HSP [cHSP]) further include cognitive deficits and dementia; however, the etiology and dysfunctional mechanisms of cHSP have remained unknown. Here, we report specific working and associative memory deficits upon spastin depletion in mice. Loss of spastin-mediated severing leads to reduced synapse numbers, accompanied by lower miniature excitatory postsynaptic current (mEPSC) frequencies. At the subcellular level, mutant neurons are characterized by longer microtubules with increased tubulin polyglutamylation levels. Notably, these conditions reduce kinesin-microtubule binding, impair the processivity of kinesin family protein (KIF) 5, and reduce the delivery of presynaptic vesicles and postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Rescue experiments confirm the specificity of these results by showing that wild-type spastin, but not the severing-deficient and disease-associated K388R mutant, normalizes the effects at the synaptic, microtubule, and transport levels. In addition, short hairpin RNA (shRNA)-mediated reduction of tubulin polyglutamylation on spastin knockout background normalizes KIF5 transport deficits and attenuates the loss of excitatory synapses. Our data provide a mechanism that connects spastin dysfunction with the regulation of kinesin-mediated cargo transport, synapse integrity, and cognition.


Subject(s)
Glutamic Acid/metabolism , Kinesins/metabolism , Memory Disorders/metabolism , Memory Disorders/physiopathology , Memory, Short-Term , Neurons/metabolism , Spastin/deficiency , Tubulin/metabolism , Action Potentials , Animals , Cell Membrane/metabolism , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Excitatory Postsynaptic Potentials , Hippocampus/pathology , Hippocampus/physiopathology , Mice, Knockout , Microtubules/metabolism , Microtubules/ultrastructure , Motor Activity , Neurons/pathology , Neurons/ultrastructure , Protein Transport , Spastin/metabolism , Synapses/metabolism , Synapses/ultrastructure , Synaptic Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...