Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 30(5): 968-976, 2017 05.
Article in English | MEDLINE | ID: mdl-28278362

ABSTRACT

The phenotype-linked fertility hypothesis suggests that females can judge male fertility by inspecting male phenotypic traits. This is because male sexually selected traits might correlate with sperm quality if both are sensitive to factors that influence male condition. A recent meta-analysis found little support for this hypothesis, suggesting little or no shared condition dependence. However, we recently reported that in captive zebra finches (Taeniopygia guttata) inbreeding had detrimental effects both on phenotypic traits and on measures of sperm quality, implying that variation in inbreeding could induce positive covariance between indicator traits and sperm quality. Therefore, we here assess empirically the average strength of correlations between phenotypic traits (courtship rate, beak colour, tarsus length) and measures of sperm quality (proportion of functional sperm, sperm velocity, sperm length) in populations of only outbred individuals and in mixed populations consisting of inbreds (F = 0.25) and outbreds (F = 0). As expected, phenotype sperm-trait correlations were stronger when the population contained a mix of inbred and outbred individuals. We also found unexpected heterogeneity between our two study populations, with correlations being considerably stronger in a domesticated population than in a recently wild-derived population. Correlations ranged from essentially zero among outbred-only wild-derived birds (mean Fisher's Zr ± SE = 0.03 ± 0.10) to moderately strong among domesticated birds of mixed inbreeding status (Zr ± SE = 0.38 ± 0.08). Our results suggest that, under some conditions, the phenotype-linked fertility hypothesis might apply.


Subject(s)
Fertility , Inbreeding , Passeriformes , Animals , Beak , Courtship , Female , Male , Phenotype , Spermatozoa
2.
Heredity (Edinb) ; 118(3): 239-248, 2017 03.
Article in English | MEDLINE | ID: mdl-27804967

ABSTRACT

The proportion of an individual's genome that is identical by descent (GWIBD) can be estimated from pedigrees (inbreeding coefficient 'Pedigree F') or molecular markers ('Marker F'), but both estimators come with error. Assuming unrelated pedigree founders, Pedigree F is the expected proportion of GWIBD given a specific inbreeding constellation. Meiotic recombination introduces variation around that expectation (Mendelian noise) and related pedigree founders systematically bias Pedigree F downward. Marker F is an estimate of the actual proportion of GWIBD but it suffers from the sampling error of markers plus the error that occurs when a marker is homozygous without reflecting common ancestry (identical by state). We here show via simulation of a zebra finch and a human linkage map that three aspects of meiotic recombination (independent assortment of chromosomes, number of crossovers and their distribution along chromosomes) contribute to variation in GWIBD and thus the precision of Pedigree and Marker F. In zebra finches, where the genome contains large blocks that are rarely broken up by recombination, the Mendelian noise was large (nearly twofold larger s.d. values compared with humans) and Pedigree F thus less precise than in humans, where crossovers are distributed more uniformly along chromosomes. Effects of meiotic recombination on Marker F were reversed, such that the same number of molecular markers yielded more precise estimates of GWIBD in zebra finches than in humans. As a consequence, in species inheriting large blocks that rarely recombine, even small numbers of microsatellite markers will often be more informative about inbreeding and fitness than large pedigrees.


Subject(s)
Finches/genetics , Inbreeding , Meiosis , Pedigree , Recombination, Genetic , Animals , Chromosome Mapping , Genetic Linkage , Genetic Markers , Genotyping Techniques , Homozygote , Humans , Microsatellite Repeats
3.
Heredity (Edinb) ; 114(4): 397-403, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25585923

ABSTRACT

Most molecular measures of inbreeding do not measure inbreeding at the scale that is most relevant for understanding inbreeding depression-namely the proportion of the genome that is identical-by-descent (IBD). The inbreeding coefficient FPed obtained from pedigrees is a valuable estimator of IBD, but pedigrees are not always available, and cannot capture inbreeding loops that reach back in time further than the pedigree. We here propose a molecular approach to quantify the realized proportion of the genome that is IBD (propIBD), and we apply this method to a wild and a captive population of zebra finches (Taeniopygia guttata). In each of 948 wild and 1057 captive individuals we analyzed available single-nucleotide polymorphism (SNP) data (260 SNPs) spread over four different genomic regions in each population. This allowed us to determine whether any of these four regions was completely homozygous within an individual, which indicates IBD with high confidence. In the highly nomadic wild population, we did not find a single case of IBD, implying that inbreeding must be extremely rare (propIBD=0-0.00094, 95% CI). In the captive population, a five-generation pedigree strongly underestimated the average amount of realized inbreeding (FPed=0.013

Subject(s)
Finches/genetics , Genetics, Population , Inbreeding , Models, Genetic , Animals , Female , Genotype , Haplotypes , Male , Pedigree , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...