Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 133: 506-516, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30041344

ABSTRACT

The behavioural responses of migrating humpback whales to an air gun, a small clustered seismic array and a commercial array were used to develop a dose-response model, accounting for the presence of the vessel, array towpath relative to the migration and social and environmental parameters. Whale groups were more likely to show an avoidance response (increasing their distance from the source) when the received sound exposure level was over 130 dB re 1 µPa2·s and they were within 4 km of the source. The 50% probability of response occurred where received levels were 150-155 dB re 1 µPa2·s and they were within 2.5 km of the source. A small number of whales moving rapidly close to the source vessel did not exhibit an avoidance response at the highest received levels (160-170 dB re 1 µPa2·s) meaning it was not possible to estimate the maximum response threshold.


Subject(s)
Humpback Whale/physiology , Models, Biological , Noise/adverse effects , Animal Migration , Animals , Avoidance Learning , Female , Male
2.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29237853

ABSTRACT

Despite concerns on the effects of noise from seismic survey airguns on marine organisms, there remains uncertainty as to the biological significance of any response. This study quantifies and interprets the response of migrating humpback whales (Megaptera novaeangliae) to a 3130 in3 (51.3l) commercial airgun array. We compare the behavioural responses to active trials (array operational; n = 34 whale groups), with responses to control trials (source vessel towing the array while silent; n = 33) and baseline studies of normal behaviour in the absence of the vessel (n = 85). No abnormal behaviours were recorded during the trials. However, in response to the active seismic array and the controls, the whales displayed changes in behaviour. Changes in respiration rate were of a similar magnitude to changes in baseline groups being joined by other animals suggesting any change group energetics was within their behavioural repertoire. However, the reduced progression southwards in response to the active treatments, for some cohorts, was below typical migratory speeds. This response was more likely to occur within 4 km from the array at received levels over 135 dB re 1 µPa2s.


Subject(s)
Animal Migration , Humpback Whale/physiology , Noise/adverse effects , Animals , Australia , Female , Male
3.
J Exp Biol ; 220(Pt 16): 2878-2886, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28814610

ABSTRACT

The effect of various anthropogenic sources of noise (e.g. sonar, seismic surveys) on the behaviour of marine mammals is sometimes quantified as a dose-response relationship, where the probability of an animal behaviourally 'responding' (e.g. avoiding the source) increases with 'dose' (or received level of noise). To do this, however, requires a definition of a 'significant' response (avoidance), which can be difficult to quantify. There is also the potential that the animal 'avoids' not only the source of noise but also the vessel operating the source, complicating the relationship. The proximity of the source is an important variable to consider in the response, yet difficult to account for given that received level and proximity are highly correlated. This study used the behavioural response of humpback whales to noise from two different air gun arrays (20 and 140 cubic inch air gun array) to determine whether a dose-response relationship existed. To do this, a measure of avoidance of the source was developed, and the magnitude (rather than probability) of this response was tested against dose. The proximity to the source, and the vessel itself, was included within the one-analysis model. Humpback whales were more likely to avoid the air gun arrays (but not the controls) within 3 km of the source at levels over 140 re. 1 µPa2 s-1, meaning that both the proximity and the received level were important factors and the relationship between dose (received level) and response is not a simple one.


Subject(s)
Behavior, Animal , Humpback Whale/physiology , Noise/adverse effects , Animals , Female , Firearms , Queensland
4.
Mar Pollut Bull ; 103(1-2): 72-83, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26781958

ABSTRACT

'Ramp-up', or 'soft start', is a mitigation measure used in seismic surveys and involves increasing the radiated sound level over 20-40 min. This study compared the behavioural response in migrating humpback whales to the first stages of ramp-up with the response to a 'constant' source, 'controls' (in which the array was towed but not operated) with groups in the absence of the source vessel used as the 'baseline'. Although the behavioural response, in most groups, resulted in an increase in distance from the source (potential avoidance), there was no evidence that either 'ramp-up' or the constant source at a higher level was superior for triggering whales to move away from the source vessel. 'Control' groups also responded suggesting the presence of the source vessel had some effect. However, the majority of groups appeared to avoid the source vessel at distances greater than the radius of most mitigation zones.


Subject(s)
Behavior, Animal , Humpback Whale/physiology , Noise , Animals , Australia , Environmental Exposure , Female , Male
5.
Adv Exp Med Biol ; 875: 145-52, 2016.
Article in English | MEDLINE | ID: mdl-26610954

ABSTRACT

Studying the behavioral response of whales to noise presents numerous challenges. In addition to the characteristics of the noise exposure, many factors may affect the response and these must be measured and accounted for in the analysis. An adequate sample size that includes matching controls is crucial if meaningful results are to be obtained. Field work is thus complicated, logistically difficult, and expensive. This paper discusses some of the challenges and how they are being met in a large-scale multiplatform project in which humpback whales are exposed to the noise of seismic air guns.


Subject(s)
Behavior, Animal/physiology , Humpback Whale/physiology , Noise , Acoustics , Animals , Ships
6.
J Exp Biol ; 216(Pt 5): 759-70, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23155085

ABSTRACT

The behavioural response study (BRS) is an experimental design used by field biologists to determine the function and/or behavioural effects of conspecific, heterospecific or anthropogenic stimuli. When carrying out these studies in marine mammals it is difficult to make basic observations and achieve sufficient samples sizes because of the high cost and logistical difficulties. Rarely are other factors such as social context or the physical environment considered in the analysis because of these difficulties. This paper presents results of a BRS carried out in humpback whales to test the response of groups to one recording of conspecific social sounds and an artificially generated tone stimulus. Experiments were carried out in September/October 2004 and 2008 during the humpback whale southward migration along the east coast of Australia. In total, 13 'tone' experiments, 15 'social sound' experiments (using one recording of social sounds) and three silent controls were carried out over two field seasons. The results (using a mixed model statistical analysis) suggested that humpback whales responded differently to the two stimuli, measured by changes in course travelled and dive behaviour. Although the response to 'tones' was consistent, in that groups moved offshore and surfaced more often (suggesting an aversion to the stimulus), the response to 'social sounds' was highly variable and dependent upon the composition of the social group. The change in course and dive behaviour in response to 'tones' was found to be related to proximity to the source, the received signal level and signal-to-noise ratio (SNR). This study demonstrates that the behavioural responses of marine mammals to acoustic stimuli are complex. In order to tease out such multifaceted interactions, the number of replicates and factors measured must be sufficient for multivariate analysis.


Subject(s)
Humpback Whale/physiology , Tape Recording , Vocalization, Animal , Animals , Multivariate Analysis , Queensland , Seasons , Signal-To-Noise Ratio , Social Behavior , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL
...