Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Rehabil Sci ; 4: 1235693, 2023.
Article in English | MEDLINE | ID: mdl-37691914

ABSTRACT

Introduction: The purpose of this study was to explore relationships between patient-specific characteristics and initial ankle-foot prosthesis prescription patterns among U.S. Service members with unilateral transtibial limb loss. Methods: A retrospective review of health records identified 174 individuals with unilateral transtibial limb loss who received care at Walter Reed National Military Medical Center between 2001 and 2019. We examined patient-specific factors such as demographics, participant duty status at injury and amputation, amputation etiology, and timing between injury, amputation, and initial prescription. The type of first prescribed ankle-foot prosthesis was categorized as energy storing and return - nonarticulating, energy storing and return - articulating, or computer controlled. Results: Sex, amputation etiology, time from injury to initial prescription, and time from amputation to initial prescription differed by type of initial ankle-foot prosthesis prescription. Service members with shorter intervals between injury-initial prescription and amputation-initial prescription, and those injured by combat blast, were more likely to receive a non-articulating device. Incorporating sex, time from injury-initial prescription, time from amputation-initial prescription, and amputation etiology as predictors of prosthesis type, we were able to correctly classify 72% of all first prostheses prescribed. Discussion: Patient-specific characteristics such as sex, the time between injury-initial prescription, time from amputation-initial prescription and amputation etiology are essential characteristics that influence initial ankle-foot prosthesis prescription patterns in U.S. Service members.

2.
Prosthet Orthot Int ; 47(2): 181-188, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36637908

ABSTRACT

INTRODUCTION: The adverse influence of chronic pain on function and psychological health in the general population is well understood. However, the relationship between phantom limb pain (PLP) after limb loss with function and psychological health is less clear. The study purpose was to assess the influences of PLP presence and intensity on function and psychosocial health in individuals with lower-limb loss (LLL). METHODS: One hundred two individuals with major LLL completed a study-specific questionnaire on the presence and intensity of their PLP. The Patient-Reported Outcomes Measurement Information System -29 questionnaire was also administered. RESULTS: Of 102 participants, 64% reported PLP, with a mean intensity of 4.8 ± 2.3 out of 10. Individuals with vs. without PLP demonstrated significantly greater sleep disturbances ( p = 0.03), whereas the differences in function, fatigue, pain interference, depressive symptoms, anxiety, or ability to participate in social roles and activities were not statistically different between groups ( p > 0.05). Of note, mean scores for many of the Patient-Reported Outcomes Measurement Information System-29 short forms among the current sample were similar to the mean of the general population, minimizing the potential clinical impact of PLP on these domains. CONCLUSIONS: Our findings indicate a lack of meaningful associations between PLP presence or intensity with function, and psychosocial health among individuals with LLL. These findings conflict with previous research suggesting an adverse relationship between PLP, function, and psychosocial health after limb loss.


Subject(s)
Amputees , Phantom Limb , Humans , Amputees/psychology , Lower Extremity , Surveys and Questionnaires
3.
Mil Med ; 188(11-12): 3432-3438, 2023 11 03.
Article in English | MEDLINE | ID: mdl-35895305

ABSTRACT

INTRODUCTION: Clinical knowledge surrounding functional outcomes of a powered knee-ankle (PKA) device is limited, particularly among younger and active populations with limb loss. Here, three service members (SM) with unilateral transfemoral limb loss received an optimally tuned PKA prosthesis and device-specific training. MATERIALS AND METHODS: Once proficiency with the PKA device was demonstrated on benchmark activities, and outcomes with the PKA and standard-of-care (SoC) prostheses were obtained via a modified graded treadmill test, 6-minute walk test, and overground gait assessment. RESULTS: All SM demonstrated proficiency with the PKA prosthesis within the minimum three training sessions. With the PKA versus SoC prosthesis, cost of transport during the modified graded treadmill test was 4.0% ± 5.2% lower at slower speeds (i.e., 0.6-1.2 m/s), but 7.0% ± 5.1% greater at the faster walking speeds (i.e., ≥1.4 m/s). For the 6-minute walk test, SM walked 83.9 ± 13.2 m shorter with the PKA versus SoC prosthesis. From the overground gait assessment, SM walked with 20.6% ± 10.5% greater trunk lateral flexion and 31.8% ± 12.8% greater trunk axial rotation ranges of motion, with the PKA versus SoC prosthesis. CONCLUSIONS: Compared to prior work with the PKA in a civilian cohort, although SM demonstrated faster device proficiency (3 versus 12 sessions), SM walked with greater compensatory motions compared to their SoC prostheses (contrary to the civilian cohort). As such, it is important to understand patient-specific factors among various populations with limb loss for optimizing device-specific training and setting functional goals for occupational and/or community reintegration, as well as reducing the risk for secondary complications over the long term.


Subject(s)
Amputees , Arthroplasty, Replacement, Knee , Artificial Limbs , Joint Prosthesis , Humans , Ankle , Lower Extremity , Walking , Biomechanical Phenomena , Gait
4.
Mil Med ; 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35234252

ABSTRACT

The only commercially available ankle-foot prosthesis with powered propulsion lacks ruggedization and other capabilities for service members seeking to return to duty and/or other physically demanding activities. Here, we evaluated a ruggedized powered ankle-foot prosthesis with electromyographic control ("Warrior Ankle"; WA) in an experienced male user of the predicate (Empower) prosthesis. The participant (age = 56 years, mass = 86.8 kg, stature = 173 cm) completed a 650 m simulated hike with varying terrain at a fixed, self-selected speed in the WA and predicate prosthesis, with and without a 22.8 kg weighted vest ("loaded" and "unloaded," respectively). Peak dorsiflexion and plantarflexion angles were extracted from each gait cycle throughout the simulated hike (∼500 prosthetic-side steps). The participant walked faster with the WA (1.15 m/s) compared to predicate (0.80 m/s) prosthesis. On the prosthetic side, peak dorsiflexion angles were larger for the WA (loaded: 27.9°; unloaded: 26.9°) compared to the predicate (loaded: 19.4°; unloaded: 21.3°); peak plantarflexion angles were similar between prostheses and loading conditions [WA (loaded: 15.5°; unloaded: 14.9°), predicate (loaded: 16.9°; unloaded: 14.8°). The WA better accommodated the varying terrain profile, evidenced by greater peak dorsiflexion angles, as well as dorsiflexion and plantarflexion angles that more closely matched or exceeded those of the innate ankle [dorsiflexion (WA: 31.6°, predicate: 27.5°); plantarflexion (WA: 20.7°, predicate: 20.5°)]. Furthermore, the WA facilitated a faster walking speed, suggesting a greater functional capacity with the WA prosthesis. Although further design enhancements are needed, this case study demonstrated feasibility of a proof-of-concept, ruggedized powered ankle-foot prosthesis with electromyographic control.

5.
Prosthet Orthot Int ; 46(2): 202-205, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34932513

ABSTRACT

BACKGROUND: Individuals with lower limb loss often wear a gel liner and enclosed socket for connecting to a terminal prosthetic device. Historically, a significant limitation to traditional liners and sockets is that they are thermal insulators, thereby trapping heat and moisture within, which can lead to numerous deleterious issues, including loss of suspension and residual limb skin problems, and, in turn, reductions in mobility, function, and overall quality of life. To mitigate these issues, new approaches are therefore needed to enhance the residual limb climate (e.g. breathability and air permeability), allowing the dispersal of heat and moisture from within the liner and socket. METHODS: In this study, a multidisciplinary team sought to establish the feasibility of an innovative prosthetic liner-socket system, designed to improve residual limb climate by capitalizing on passive (i.e. nonpowered) ventilation to reduce temperature/moisture and improve socket comfort for persons with transtibial amputations. Focus group meetings, along with an iterative design approach, were implemented to establish innovative design and development concepts that led to a passively ventilated liner-socket system. CONCLUSIONS: Ex vivo design has supported the feasibility of developing a passively ventilated liner-socket. To build on these successes, future development and human subjects testing are needed to finalize a commercially viable system. Implementing a passively ventilated liner-socket system that improves residual limb health and comfort, without compromising function or mobility of the user, into standard clinical care may encourage a more active lifestyle and enhance the quality of life for individuals after lower limb loss.


Subject(s)
Artificial Limbs , Quality of Life , Amputation Stumps , Humans , Lower Extremity , Prosthesis Design
6.
Adv Wound Care (New Rochelle) ; 10(12): 671-684, 2021 12.
Article in English | MEDLINE | ID: mdl-32320367

ABSTRACT

Significance: The intent of this work was to summarize the existing evidence of, and highlight knowledge gaps specific to, prosthetic devices/componentry and training regimes, particularly in the context of the human-device interaction and deleterious musculoskeletal conditions secondary to lower limb loss. Recent Advances: With the recent and evolving technological advancements in prostheses, there are numerous devices available to individuals with lower limb loss. Current literature demonstrates the importance of expanding the knowledge of all prosthetic device-specific factors and the significance of proper prescription, fit, and alignment, along with adequate device-/activity-specific training, to enhance human-device interaction, reduce gait abnormalities and compensatory motions, and as a result, mitigate risk for secondary musculoskeletal conditions. Critical Issues: Inadequate device prescription, fit, alignment, and training are evident owing to the lack of knowledge or awareness of the many device-specific properties and factors, leading to suboptimal use, as well as, biomechanical compensations, which collectively and adversely affect the function, activity level, and overall health of the prosthesis user. Future Directions: To maximize optimal outcomes after lower limb loss, it is essential to better appreciate the factors that affect both prosthesis use and satisfaction, particularly any modifiable factors that might be targeted in rehabilitation interventions such as device prescription, fit/alignment, and training regimes. A better understanding of such device-specific factors will help enhance the human-device interaction and resulting functional performance, thereby reducing secondary musculoskeletal conditions, allowing for the readiness of the fighting force (return-to-duty/redeployment) and/or improved reintegration into civilian society/work, and overall enhancing quality of life after lower limb loss.


Subject(s)
Amputation, Surgical/rehabilitation , Amputees/rehabilitation , Lower Extremity/injuries , Prostheses and Implants/statistics & numerical data , Amputation, Surgical/adverse effects , Humans , Musculoskeletal Diseases/etiology , Musculoskeletal Diseases/rehabilitation , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...