Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JPhys Mater ; 6(1): 19-21, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36883191
2.
Acta Biomater ; 148: 323-335, 2022 08.
Article in English | MEDLINE | ID: mdl-35671876

ABSTRACT

Polypropylene meshes used in pelvic organ prolapse (POP) repair are hampered by complications. Most POP meshes are highly unstable after tensioning ex vivo, as evidenced by marked deformations (pore collapse and wrinkling) that result in altered structural properties and material burden. By intentionally introducing collapsed pores and wrinkles into a mesh that normally has open pores and remains relatively flat after implantation, we reproduce mesh complications in vivo. To do this, meshes were implanted onto the vagina of rhesus macaques in nondeformed (flat) vs deformed (pore collapse +/- wrinkles) configurations and placed on tension. Twelve weeks later, animals with deformed meshes had two complications, (1) mesh exposure through the vaginal epithelium, and (2) myofibroblast proliferation with fibrosis - a mechanism of pain. The overarching response to deformed mesh was vaginal thinning associated with accelerated apoptosis, reduced collagen content, increased proteolysis, deterioration of mechanical integrity, and loss of contractile function consistent with stress shielding - a precursor to mesh exposure. Regional differences were observed, however, with some areas demonstrating myofibroblast proliferation and matrix deposition. Variable mechanical cues imposed by deformed meshes likely induce these two disparate responses. Utilizing meshes associated with uniform stresses on the vagina by remaining flat with open pores after tensioning is critical to improving outcomes. STATEMENT OF SIGNIFICANCE: Pain and exposure are the two most reported complications associated with the use of polypropylene mesh in urogynecologic procedures. Most meshes have unstable geometries as evidenced by pore collapse and wrinkling after tensioning ex vivo, recapitulating what is observed in meshes excised from women with complications in vivo. We demonstrate that collapsed pores and wrinkling result in two distinct responses (1) mesh exposure associated with tissue degradation and atrophy and (2) myofibroblast proliferation and matrix deposition consistent with fibrosis, a tissue response associated with pain. In conclusion, mesh deformation leads to areas of tissue degradation and myofibroblast proliferation, the likely mechanisms of mesh exposure and pain, respectively. These data corroborate that mesh implantation in a flat configuration with open pores is a critical factor for reducing complications in mesh-augmented surgeries.


Subject(s)
Pelvic Organ Prolapse , Polypropylenes , Animals , Female , Fibrosis , Humans , Macaca mulatta , Pain , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/surgery , Polypropylenes/adverse effects , Polypropylenes/chemistry , Surgical Mesh/adverse effects , Vagina/metabolism , Vagina/surgery
3.
Int Urogynecol J ; 33(2): 327-335, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33860812

ABSTRACT

INTRODUCTION AND HYPOTHESIS: We compared the impact of a mesh manufactured from the soft elastomer polydimethylsiloxane (PDMS) to that of a widely used lightweight polypropylene (PP) mesh. To achieve a similar overall device stiffness between meshes, the PDMS mesh was made with more material and therefore was heavier and less porous. We hypothesized that the soft polymer PDMS mesh, despite having more material, would have a similar impact on the vagina as the PP mesh. METHODS: PDMS and PP meshes were implanted onto the vaginas of 20 rabbits via colpopexy. Ten rabbits served as sham. At 12 weeks, mesh-vagina complexes were explanted and assessed for contractile function, histomorphology, total collagen, and glycosaminoglycan content. Outcome measures were compared using one-way ANOVA and Kruskal-Wallis testing with appropriate post-hoc testing. RESULTS: Relative to sham, vaginal contractility was reduced following the implantation of PP (p = 0.035) but not the softer PDMS (p = 0.495). PP had an overall greater negative impact on total collagen and glycosaminoglycan content, decreasing by 53% (p < 0.001) and 54% (p < 0.001) compared to reductions of 35% (p = 0.004 and p < 0.001) with PDMS. However, there were no significant differences in the contractility, collagen fiber thickness, total collagen, and glycosaminoglycan content between the two meshes. CONCLUSIONS: Despite having a substantially higher weight, PDMS had a similar impact on the vagina compared to a low-weight PP mesh, implicating soft polymers as potential alternatives to PP. The notion that heavyweight meshes are associated with a worse host response is not applicable when comparing across materials.


Subject(s)
Pelvic Organ Prolapse , Polypropylenes , Animals , Elastomers , Female , Humans , Pelvic Organ Prolapse/surgery , Rabbits , Surgical Mesh , Vagina/surgery
4.
Am J Obstet Gynecol ; 224(1): 78.e1-78.e7, 2021 01.
Article in English | MEDLINE | ID: mdl-32707267

ABSTRACT

BACKGROUND: Stress urinary incontinence carries a significant healthcare burden for women worldwide. Single incision slings are minimally invasive mesh devices designed to treat stress urinary incontinence. For prolapse repair, meshes with higher porosity and lower structural stiffness have been associated with improved outcomes. OBJECTIVE: In this study, we compared the higher stiffness, lower porosity Altis sling with the lower stiffness, higher porosity Solyx sling in an ovine model. We hypothesized that SIS-B would have a negative impact on the host response. STUDY DESIGN: A total of Altis and Solyx single incision slings were implanted suburethrally into sheep according to the manufacturer's instructions on minimal tension. The mesh-urethral-vaginal complex and adjacent ungrafted vagina (no mesh control) were harvested en bloc at 3 months. Masson's trichrome and picrosirius red staining of 6 µm thin sections was performed to measure interfiber distance and tissue integration. Smooth muscle contractility to a 120 mM KCl stimulus was performed in an organ bath to measure myofiber-driven contractions. Standard biochemical assays were used to quantify glycosaminoglycan, total collagen, and elastin content, and collagen subtypes. Bending stiffness was performed in response to a uniaxial force to define susceptibility to folding/buckling. Statistical analysis was performed using Mann-Whitney, Gabriel's pairwise post hoc, Wilcoxon matched-pairs, and chi-square tests. RESULTS: The animals had similar ages (3-5 years), parity (multiparous), and weights (45-72 kg). Trichrome cross sections showed that the Altis sling buckled in a "C" or "S" shape in most samples (8 of 11), whereas buckling after Solyx sling implantation was observed in only a single sample (1 of 13; P=.004). Tissue integration, as measured by the presence of collagen or smooth muscle between the mesh fibers on trichrome 4× imaging, was increased in samples implanted with the Solyx sling compared with the Altis sling (P<.05). Total collagen content decreased significantly with both products when compared with the ungrafted vagina consistent with stress shielding. There was no difference in the 2 groups with regard to glycosaminoglycan or elastin content. The Altis sling mesh tissue complex demonstrated significantly higher amounts of both collagen types I and III than the Solyx sling-implanted tissue and the ungrafted control. Smooth muscle contractility in response to 120 mM KCl was decreased after implantation of both slings compared with the sham (P=.011 and P<.01), with no difference between mesh types (P=.099). Bending stiffness in the Altis sling was more than 4 times lower than in the Solyx, indicating an increased propensity to buckle (0.0186 vs 0.0883). CONCLUSION: The structurally stiffer Altis sling had decreased tissue integration and increased propensity to buckle after implantation. Increased collagen types I and III after the implantation of this device suggests that these changes may be associated with a fibrotic response. In contrast, the Solyx sling largely maintained a flat configuration and had improved tissue integration. The deformation of the Altis sling is not an intended effect and is likely caused by its lower bending stiffness. Both meshes induced a decrease in collagen content and smooth muscle contractility similar to previous findings for prolapse meshes and consistent with stress shielding. The long-term impact of buckling warrants further investigation.


Subject(s)
Models, Animal , Suburethral Slings , Urinary Incontinence, Stress/surgery , Vagina/surgery , Animals , Female , Sheep
5.
Int Urogynecol J ; 31(1): 91-99, 2020 01.
Article in English | MEDLINE | ID: mdl-31418044

ABSTRACT

INTRODUCTION AND HYPOTHESIS: New Zealand white rabbits are an inexpensive large-animal model. This study explored the rabbit as a model for mesh-augmented colpopexy using the intra-abdominal vagina. We hypothesized that polypropylene mesh would negatively impact rabbit vaginal smooth muscle (VSM) morphology and contractile function, similar to the nonhuman primate (NHP)-the established model for prolapse mesh evaluation. METHODS: Restorelle was implanted onto the vagina of ten rabbits via lumbar colpopexy after a hysterectomy. Ten rabbits served as sham. Twelve weeks post-implantation, the vagina was excised and VSM morphology and vaginal contractility were assessed. Outcome measures were compared using independent samples t and Mann-Whitney U tests with a Bonferroni correction, where appropriate. Results from the rabbits were compared with published NHP data. RESULTS: Animals had similar age, parity and BMI. VSM was 18% thinner after Restorelle implantation, P = 0.027. Vaginal contractility was 43% decreased in response to 120 mM KCl (P = 0.003), similar to the 46% reduction observed in the NHP vagina implanted with Restorelle (P = 0.027). Three meshes wrinkled in vivo, resulting in dramatic thinning of the underlying vagina in the area of the mesh causing a mesh exposure. CONCLUSIONS: Polypropylene mesh negatively impacts VSM morphology and vaginal contractility in the rabbit, similar to the NHP, suggesting that the rabbit may serve as an alternative large-animal model. The vaginal thinning and appearance of a mesh exposure in the area of a mesh wrinkle suggest the rabbit may also serve as a model for understanding the pathophysiology of mesh exposure.


Subject(s)
Colposcopy/methods , Pelvic Organ Prolapse/surgery , Prosthesis Implantation/methods , Surgical Mesh , Animals , Disease Models, Animal , Equipment Design , Female , Lumbar Vertebrae/surgery , Polypropylenes , Rabbits , Vagina/surgery
6.
J Biomech Eng ; 141(2)2019 02 01.
Article in English | MEDLINE | ID: mdl-30347035

ABSTRACT

Synthetic mesh for pelvic organ prolapse (POP) repair is associated with high complication rates. While current devices incorporate large pores (>1 mm), recent studies have shown that uniaxial loading of mesh reduces pore size, raising the risk for complications. However, it is difficult to translate uniaxial results to transvaginal meshes, as in vivo loading is multidirectional. Thus, the aim of this study was to (1) experimentally characterize deformation of pore diameters in a transvaginal mesh in response to clinically relevant multidirectional loading and (2) develop a computational model to simulate mesh behavior in response to in vivo loading conditions. Tension (2.5 N) was applied to each of mesh arm to simulate surgical implantation. Two loading conditions were assessed where the angle of the applied tension was altered and image analysis was used to quantify changes in pore dimensions. A computational model was developed and used to simulate pore behavior in response to these same loading conditions and the results were compared to experimental findings. For both conditions, between 26.4% and 56.6% of all pores were found to have diameters <1 mm. Significant reductions in pore diameter were noted in the inferior arms and between the two superior arms. The computational model identified the same regions, though the model generally underestimated pore deformation. This study demonstrates that multiaxial loading applied clinically has the potential to locally reduce porosity in transvaginal mesh, increasing the risk for complications. Computational simulations show potential of predicting this behavior for more complex loading conditions.


Subject(s)
Materials Testing , Surgical Mesh , Vagina , Computer Simulation , Female , Humans , Pelvic Organ Prolapse/surgery , Porosity , Weight-Bearing
7.
J Biomech Eng ; 140(5)2018 05 01.
Article in English | MEDLINE | ID: mdl-29350744

ABSTRACT

Pelvic organ prolapse (POP) meshes are exposed to predominately tensile loading conditions in vivo that can lead to pore collapse by 70-90%, decreasing overall porosity and providing a plausible mechanism for the contraction/shrinkage of mesh observed following implantation. To prevent pore collapse, we proposed to design synthetic meshes with a macrostructure that results in auxetic behavior, the pores expand laterally, instead of contracting when loaded. Such behavior can be achieved with a range of auxetic structures/geometries. This study utilized finite element analysis (FEA) to assess the behavior of mesh models with eight auxetic pore geometries subjected to uniaxial loading to evaluate their potential to allow for pore expansion while simultaneously providing resistance to tensile loading. Overall, substituting auxetic geometries for standard pore geometries yielded more pore expansion, but often at the expense of increased model elongation, with two of the eight auxetics not able to maintain pore expansion at higher levels of tension. Meshes with stable pore geometries that remain open with loading will afford the ingrowth of host tissue into the pores and improved integration of the mesh. Given the demonstrated ability of auxetic geometries to allow for pore size maintenance (and pore expansion), auxetically designed meshes have the potential to significantly impact surgical outcomes and decrease the likelihood of major mesh-related complications.


Subject(s)
Computer Simulation , Materials Testing , Prosthesis Design , Prosthesis Failure , Surgical Mesh , Computer-Aided Design , Finite Element Analysis , Pelvic Organ Prolapse/surgery , Porosity , Tensile Strength
8.
Int Urogynecol J ; 27(8): 1255-63, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26872644

ABSTRACT

INTRODUCTION AND HYPOTHESIS: Parity is the leading risk factor for the development of pelvic organ prolapse. To assess the impact of pregnancy and delivery on vaginal tissue, researchers commonly use nonhuman primate (NHP) and rodent models. The purpose of this study was to evaluate the ewe as an alternative model by investigating the impact of parity on the ewe vaginal mechanical properties and collagen structure. METHODS: Mechanical properties of 15 nulliparous and parous ewe vaginas were determined via uniaxial tensile tests. Collagen content was determined by hydroxyproline assay and collagen fiber thickness was analyzed using picrosirius red staining. Outcome measures were compared using Independent samples t or Mann-Whitney U tests. ANOVA (Gabriel's pairwise post-hoc test) or the Welch Alternative for the F-ratio (Games Howell post-hoc test) was used to compare data with previously published NHP and rodent data. RESULTS: Vaginal tissue from the nulliparous ewe had a higher tangent modulus and tensile strength compared with the parous ewe (p < 0.025). The parous ewe vagina elongated 42 % more than the nulliparous ewe vagina (p = 0.015). No significant differences were observed in collagen structure among ewe vaginas. The tangent modulus of the nulliparous ewe vagina was not different from that of the NHP or rodent (p = 0.290). Additionally, the tangent moduli of the parous ewe and NHP vaginas did not differ (p = 0.773). CONCLUSIONS: Parity has a negative impact on the mechanical properties of the ewe vagina, as also observed in the NHP. The ewe may serve as an alternative model for studying parity and ultimately prolapse development.


Subject(s)
Parity/physiology , Vagina/physiology , Analysis of Variance , Animals , Biomechanical Phenomena , Collagen/analysis , Female , Models, Animal , Pregnancy , Primates/physiology , Rodentia/physiology , Sheep , Statistics, Nonparametric , Tensile Strength , Vagina/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...