Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2401625121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507449

ABSTRACT

Molecular motors employ chemical energy to generate unidirectional mechanical output against a track while navigating a chaotic cellular environment, potential disorder on the track, and against Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.


Subject(s)
Actins , Myosin Type V , Actins/chemistry , Myosins/chemistry , Actin Cytoskeleton/chemistry , Motion , Myosin Type V/chemistry
2.
Nature ; 623(7988): 703-704, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914878

Subject(s)
Heart , Myocardium , Sarcomeres
3.
bioRxiv ; 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37503193

ABSTRACT

Molecular motors employ chemical energy to generate unidirectional mechanical output against a track. By contrast to the majority of macroscopic machines, they need to navigate a chaotic cellular environment, potential disorder in the track and Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering (iSCAT) microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably-spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.

4.
Nature ; 588(7838): 515-520, 2020 12.
Article in English | MEDLINE | ID: mdl-33268888

ABSTRACT

Myosin-2 is essential for processes as diverse as cell division and muscle contraction. Dephosphorylation of its regulatory light chain promotes an inactive, 'shutdown' state with the filament-forming tail folded onto the two heads1, which prevents filament formation and inactivates the motors2. The mechanism by which this happens is unclear. Here we report a cryo-electron microscopy structure of shutdown smooth muscle myosin with a resolution of 6 Å in the head region. A pseudo-atomic model, obtained by flexible fitting of crystal structures into the density and molecular dynamics simulations, describes interaction interfaces at the atomic level. The N-terminal extension of one regulatory light chain interacts with the tail, and the other with the partner head, revealing how the regulatory light chains stabilize the shutdown state in different ways and how their phosphorylation would allow myosin activation. Additional interactions between the three segments of the coiled coil, the motor domains and the light chains stabilize the shutdown molecule. The structure of the lever in each head is competent to generate force upon activation. This shutdown structure is relevant to all isoforms of myosin-2 and provides a framework for understanding their disease-causing mutations.


Subject(s)
Cryoelectron Microscopy , Myosin Type II/chemistry , Myosin Type II/ultrastructure , Animals , Enzyme Activation , Enzyme Stability , Models, Molecular , Muscle, Smooth/chemistry , Myosin Light Chains/chemistry , Myosin Light Chains/metabolism , Myosin Light Chains/ultrastructure , Myosin Type II/metabolism , Phosphorylation , Protein Domains , Turkeys
6.
Meat Sci ; 157: 107854, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31234029
7.
Methods Mol Biol ; 1805: 185-211, 2018.
Article in English | MEDLINE | ID: mdl-29971719

ABSTRACT

Stable, single α-helical (SAH) domains exist in a number of unconventional myosin isoforms, as well as other proteins. These domains are formed from sequences rich in charged residues (Arg, Lys, and Glu), they can be hundreds of residues long, and in isolation they can tolerate significant changes in pH and salt concentration without loss in helicity. Here we describe methods for the preparation and purification of SAH domains and SAH domain-containing constructs, using the myosin 10 SAH domain as an example. We go on to describe the use of circular dichroism spectroscopy and force spectroscopy with the atomic force microscope for the elucidation of structural and mechanical properties of these unusual helical species.


Subject(s)
Circular Dichroism/methods , Microscopy, Atomic Force/methods , Protein Domains , Protein Structure, Secondary , Calibration , Chromatography, Affinity , Chromatography, Ion Exchange , Proteins/chemistry
8.
Sci Rep ; 8(1): 6572, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29700342

ABSTRACT

Imaging the actin cytoskeleton in cells uses a wide range of approaches. Typically, a fluorescent derivative of the small cyclic peptide phalloidin is used to image F-actin in fixed cells. Lifeact and F-tractin are popular for imaging the cytoskeleton in live cells. Here we characterised novel affinity reagents called Affimers that specifically bind to F-actin in vitro to determine if they are suitable alternatives as eGFP-fusion proteins, to label actin in live cells, or for labeling F-actin in fixed cells. In vitro experiments showed that 3 out of the 4 Affimers (Affimers 6, 14 and 24) tested bind tightly to purified F-actin, and appear to have overlapping binding sites. As eGFP-fusion proteins, the same 3 Affimers label F-actin in live cells. FRAP experiments suggest that eGFP-Affimer 6 behaves most similarly to F-tractin and Lifeact. However, it does not colocalise with mCherry-actin in dynamic ruffles, and may preferentially bind stable actin filaments. All 4 Affimers label F-actin in methanol fixed cells, while only Affimer 14 labels F-actin after paraformaldehyde fixation. eGFP-Affimer 6 has potential for use in selectively imaging the stable actin cytoskeleton in live cells, while all 4 Affimers are strong alternatives to phalloidin for labelling F-actin in fixed cells.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Binding Sites , CHO Cells , Cricetulus , Genes, Reporter , Molecular Imaging/methods , Phalloidine , Protein Binding , Staining and Labeling
9.
J Mol Biol ; 430(10): 1459-1478, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29660325

ABSTRACT

Over 20 mutations in ß-cardiac myosin heavy chain (ß-MHC), expressed in cardiac and slow muscle fibers, cause Laing early-onset distal myopathy (MPD-1), a skeletal muscle myopathy. Most of these mutations are in the coiled-coil tail and commonly involve a mutation to a proline or a single-residue deletion, both of which are predicted to strongly affect the secondary structure of the coiled coil. To test this, we characterized the effects of two MPD-1 causing mutations: A1603P and K1617del in vitro and in cells. Both mutations affected secondary structure, decreasing the helical content of 15 heptad and light meromyosin constructs. Both mutations also severely disrupted the ability of glutathione S-transferase-light meromyosin fusion proteins to form minifilaments in vitro, as demonstrated by negative stain electron microscopy. Mutant eGFP-tagged ß-MHC accumulated abnormally into the M-line of sarcomeres in cultured skeletal muscle myotubes. Incorporation of eGFP-tagged ß-MHC into sarcomeres in adult rat cardiomyocytes was reduced. Molecular dynamics simulations using a composite structure of part of the coiled coil demonstrated that both mutations affected the structure, with the mutation to proline (A1603P) having a smaller effect compared to K1617del. Taken together, it seems likely that the MPD-1 mutations destabilize the coiled coil, resulting in aberrant myosin packing in thick filaments in muscle sarcomeres, providing a potential mechanism for the disease.


Subject(s)
Cardiac Myosins/chemistry , Cardiac Myosins/genetics , Distal Myopathies/genetics , Muscle Fibers, Skeletal/cytology , Mutation , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/genetics , Animals , Cardiac Myosins/metabolism , Cell Line , In Vitro Techniques , Mice , Microscopy, Electron , Molecular Dynamics Simulation , Muscle Fibers, Skeletal/metabolism , Myosin Heavy Chains/metabolism , Protein Structure, Secondary , Rats , Sarcomeres/chemistry , Sarcomeres/metabolism
10.
Sci Rep ; 7: 44341, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287151

ABSTRACT

Naturally-occurring single α-helices (SAHs), are rich in Arg (R), Glu (E) and Lys (K) residues, and stabilized by multiple salt bridges. Understanding how salt bridges promote their stability is challenging as SAHs are long and their sequences highly variable. Thus, we designed and tested simple de novo 98-residue polypeptides containing 7-residue repeats (AEEEXXX, where X is K or R) expected to promote salt-bridge formation between Glu and Lys/Arg. Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) both form SAHs, of which EK2R1 is more helical and thermo-stable suggesting Arg increases stability. Substituting Lys with Arg (or vice versa) in the naturally-occurring myosin-6 SAH similarly increased (or decreased) its stability. However, Arg-rich de novo sequences (ER3 (AEEERRR) and EK1R2 (AEEEKRR)) aggregated. Combining a PDB analysis with molecular modelling provides a rational explanation, demonstrating that Glu and Arg form salt bridges more commonly, utilize a wider range of rotamer conformations, and are more dynamic than Glu-Lys. This promiscuous nature of Arg helps explain the increased propensity of de novo Arg-rich SAHs to aggregate. Importantly, the specific K:R ratio is likely to be important in determining helical stability in de novo and naturally-occurring polypeptides, giving new insight into how single α-helices are stabilized.


Subject(s)
Arginine/chemistry , Glutamic Acid/chemistry , Lysine/chemistry , Peptides/chemistry , Protein Conformation, alpha-Helical , Amino Acid Sequence , Hydrogen Bonding , Models, Molecular , Molecular Dynamics Simulation , Protein Folding , Protein Stability , Thermodynamics
11.
Nat Commun ; 6: 8179, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26365535

ABSTRACT

Cytoplasmic dynein is a dimeric AAA(+) motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA(+) rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour.


Subject(s)
Adenosine Triphosphate/metabolism , Cytoplasmic Dyneins/metabolism , Microtubules/metabolism , Tubulin/metabolism , Animals , Cryoelectron Microscopy , Cytoplasmic Dyneins/ultrastructure , Dictyostelium , Microscopy, Electron , Microscopy, Fluorescence , Microtubules/ultrastructure , Models, Molecular , Molecular Motor Proteins , Swine , Tubulin/ultrastructure
12.
J Biol Chem ; 290(35): 21460-72, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26175154

ABSTRACT

The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼ 32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼ 80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible "dog leash," allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation.


Subject(s)
Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , Microtubules/metabolism , Mitosis , Amino Acid Sequence , Animals , Aurora Kinase B/metabolism , Cell Line , Cell Proliferation , Chickens , Models, Biological , Molecular Sequence Data , Mutant Proteins/metabolism , Mutation , Phosphorylation , Protein Binding , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship
13.
Biochem Soc Trans ; 43(1): 58-63, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25619246

ABSTRACT

The human genome contains 39 myosin genes, divided up into 12 different classes. The structure, cellular function and biochemical properties of many of these isoforms remain poorly characterized and there is still some controversy as to whether some myosin isoforms are monomers or dimers. Myosin isoforms 6 and 10 contain a stable single α-helical (SAH) domain, situated just after the canonical lever. The SAH domain is stiff enough to be able to lengthen the lever allowing the myosin to take a larger step. In addition, atomic force microscopy and atomistic simulations show that SAH domains unfold at relatively low forces and have a high propensity to refold. These properties are likely to be important for protein function, enabling motors to carry cargo in dense actin networks, and other proteins to remain attached to binding partners in the crowded cell.


Subject(s)
Myosins/chemistry , Amino Acid Sequence , Animals , Humans , Models, Molecular , Molecular Sequence Data , Myosins/physiology , Protein Interaction Domains and Motifs , Protein Structure, Secondary
14.
J Biol Chem ; 289(40): 27825-35, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25122759

ABSTRACT

Single α-helix (SAH) domains are rich in charged residues (Arg, Lys, and Glu) and stable in solution over a wide range of pH and salt concentrations. They are found in many different proteins where they bridge two functional domains. To test the idea that their high stability might enable these proteins to resist unfolding along their length, the properties and unfolding behavior of the predicted SAH domain from myosin-10 were characterized. The expressed and purified SAH domain was highly helical, melted non-cooperatively, and was monomeric as shown by circular dichroism and mass spectrometry as expected for a SAH domain. Single molecule force spectroscopy experiments showed that the SAH domain unfolded at very low forces (<30 pN) without a characteristic unfolding peak. Molecular dynamics simulations showed that the SAH domain unfolds progressively as the length is increased and refolds progressively as the length is reduced. This enables the SAH domain to act as a constant force spring in the mechanically dynamic environment of the cell.


Subject(s)
Myosins/chemistry , Animals , Cattle , Circular Dichroism , Microscopy, Atomic Force , Models, Molecular , Myosins/genetics , Myosins/metabolism , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary
15.
Hum Mutat ; 35(2): 236-47, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24186861

ABSTRACT

MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in the gene for nonmuscle myosin heavy chain IIA (NMMHC-IIA). MYH9-RD is characterized by a considerable variability in clinical evolution: patients present at birth with only thrombocytopenia, but some of them subsequently develop sensorineural deafness, cataract, and/or nephropathy often leading to end-stage renal disease (ESRD). We searched for genotype-phenotype correlations in the largest series of consecutive MYH9-RD patients collected so far (255 cases from 121 families). Association of genotypes with noncongenital features was assessed by a generalized linear regression model. The analysis defined disease evolution associated to seven different MYH9 genotypes that are responsible for 85% of MYH9-RD cases. Mutations hitting residue R702 demonstrated a complete penetrance for early-onset ESRD and deafness. The p.D1424H substitution associated with high risk of developing all the noncongenital manifestations of disease. Mutations hitting a distinct hydrophobic seam in the NMMHC-IIA head domain or substitutions at R1165 associated with high risk of deafness but low risk of nephropathy or cataract. Patients with p.E1841K, p.D1424N, and C-terminal deletions had low risk of noncongenital defects. These findings are essential to patients' clinical management and genetic counseling and are discussed in view of molecular pathogenesis of MYH9-RD.


Subject(s)
Cataract/genetics , Genetic Association Studies , Hearing Loss, Sensorineural/genetics , Molecular Motor Proteins/genetics , Myosin Heavy Chains/genetics , Thrombocytopenia/congenital , Adult , Age of Onset , Amino Acid Substitution , Female , Genotype , Hearing Loss, Sensorineural/complications , Hearing Loss, Sensorineural/diagnosis , Humans , Italy , Linear Models , Male , Mutation , Phenotype , Risk Factors , Thrombocytopenia/complications , Thrombocytopenia/diagnosis , Thrombocytopenia/genetics
16.
J Mol Biol ; 426(4): 894-907, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24333017

ABSTRACT

We show that negative-stain electron microscopy and image processing of nucleotide-free (apo) striated muscle myosin-2 subfragment-1 (S1), possessing one light chain or both light chains, is capable of resolving significant amounts of structural detail. The overall appearance of the motor and the lever is similar in rabbit, scallop and chicken S1. Projection matching of class averages of the different S1 types to projection views of two different crystal structures of apo S1 shows that all types most commonly closely resemble the appearance of the scallop S1 structure rather than the methylated chicken S1 structure. Methylation of chicken S1 has no effect on the structure of the molecule at this resolution: it too resembles the scallop S1 crystal structure. The lever is found to vary in its angle of attachment to the motor domain, with a hinge point located in the so-called pliant region between the converter and the essential light chain. The chicken S1 crystal structure lies near one end of the range of flexion observed. The Gaussian spread of angles of flexion suggests that flexibility is driven thermally, from which a torsional spring constant of ~23 pN·nm/rad² is estimated on average for all S1 types, similar to myosin-5. This translates to apparent cantilever-type stiffness at the tip of the lever of 0.37 pN/nm. Because this stiffness is lower than recent estimates from myosin-2 heads attached to actin, we suggest that binding to actin leads to an allosteric stiffening of the motor-lever junction.


Subject(s)
Myosin Light Chains/chemistry , Myosin Subfragments/chemistry , Animals , Chickens , Image Processing, Computer-Assisted , Methylation , Microscopy, Electron , Myosin Light Chains/metabolism , Myosin Subfragments/metabolism , Pecten/chemistry , Protein Conformation , Rabbits
17.
J Biol Chem ; 288(44): 31952-62, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24047955

ABSTRACT

It is unclear why mutations in the filament-forming tail of myosin heavy chain (MHC) cause hypertrophic or dilated cardiomyopathy as these mutations should not directly affect contraction. To investigate this, we first investigated the impact of five hypertrophic cardiomyopathy-causing (N1327K, E1356K, R1382W, E1555K, and R1768K) and one dilated cardiomyopathy-causing (R1500W) tail mutations on their ability to incorporate into muscle sarcomeres in vivo. We used adenoviral delivery to express full-length wild type or mutant enhanced GFP-MHC in isolated adult cardiomyocytes. Three mutations (N1327K, E1356K, and E1555K) reduced enhanced GFP-MHC incorporation into muscle sarcomeres, whereas the remainder had no effect. No mutations significantly affected contraction. Fluorescence recovery after photobleaching showed that fluorescence recovery for the mutation that incorporated least well (N1327K) was significantly faster than that of WT with half-times of 25.1 ± 1.8 and 32.2 ± 2.5 min (mean ± S.E.), respectively. Next, we determined the effects of each mutation on the helical properties of wild type and seven mutant peptides (7, 11, or 15 heptads long) from the myosin tail by circular dichroism. R1382W and E1768K slightly increased the α-helical nature of peptides. The remaining mutations reduced α-helical content, with N1327K showing the greatest reduction. Only peptides containing residues 1301-1329 were highly α-helical suggesting that this region helps in initiation of coiled coil. These results suggest that small effects of mutations on helicity translate into a reduced ability to incorporate into sarcomeres, which may elicit compensatory hypertrophy.


Subject(s)
Cardiomegaly/enzymology , Genetic Diseases, Inborn/enzymology , Mutation, Missense , Myosin Heavy Chains/metabolism , Sarcomeres/enzymology , Amino Acid Substitution , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/genetics , Protein Structure, Secondary , Rats , Sarcomeres/pathology
18.
Nat Rev Mol Cell Biol ; 14(11): 713-26, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24064538

ABSTRACT

Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement.


Subject(s)
Dyneins/metabolism , Animals , Dyneins/chemistry , Humans , Models, Biological
19.
J Biol Chem ; 288(13): 9532-48, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23382379

ABSTRACT

The Mus musculus myosin-18A gene is expressed as two alternatively spliced isoforms, α and ß, with reported roles in Golgi localization, in maintenance of cytoskeleton, and as receptors for immunological surfactant proteins. Both myosin-18A isoforms feature a myosin motor domain, a single predicted IQ motif, and a long coiled-coil reminiscent of myosin-2. The myosin-18Aα isoform, additionally, has an N-terminal PDZ domain. Recombinant heavy meromyosin- and subfragment-1 (S1)-like constructs for both myosin-18Aα and -18ß species were purified from the baculovirus/Sf9 cell expression system. These constructs bound both essential and regulatory light chains, indicating an additional noncanonical light chain binding site in the neck. Myosin-18Aα-S1 and -18Aß-S1 molecules bound actin weakly with Kd values of 4.9 and 54 µm, respectively. The actin binding data could be modeled by assuming an equilibrium between two myosin conformations, a competent and an incompetent form to bind actin. Actin binding was unchanged by presence of nucleotide. Both myosin-18A isoforms bound N-methylanthraniloyl-nucleotides, but the rate of ATP hydrolysis was very slow (<0.002 s(-1)) and not significantly enhanced by actin. Phosphorylation of the regulatory light chain had no effect on ATP hydrolysis, and neither did the addition of tropomyosin or of GOLPH3, a myosin-18A binding partner. Electron microscopy of myosin-18A-S1 showed that the lever is strongly angled with respect to the long axis of the motor domain, suggesting a pre-power stroke conformation regardless of the presence of ATP. These data lead us to conclude that myosin-18A does not operate as a traditional molecular motor in cells.


Subject(s)
Myosins/chemistry , Actins/metabolism , Adenosine Triphosphate/chemistry , Animals , Baculoviridae/metabolism , Cell Movement , Cloning, Molecular , Humans , Hydrolysis , Kinetics , Light , Mice , Microscopy, Electron/methods , Models, Molecular , Muscle, Skeletal/metabolism , Myosins/metabolism , Phosphorylation , Protein Binding , Protein Isoforms , Protein Structure, Tertiary , Rabbits , Tropomyosin/chemistry
20.
Structure ; 20(10): 1670-80, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22863569

ABSTRACT

Dynein ATPases are the largest known cytoskeletal motors and perform critical functions in cells: carrying cargo along microtubules in the cytoplasm and powering flagellar beating. Dyneins are members of the AAA+ superfamily of ring-shaped enzymes, but how they harness this architecture to produce movement is poorly understood. Here, we have used cryo-EM to determine 3D maps of native flagellar dynein-c and a cytoplasmic dynein motor domain in different nucleotide states. The structures show key sites of conformational change within the AAA+ ring and a large rearrangement of the "linker" domain, involving a hinge near its middle. Analysis of a mutant in which the linker "undocks" from the ring indicates that linker remodeling requires energy that is supplied by interactions with the AAA+ modules. Fitting the dynein-c structures into flagellar tomograms suggests how this mechanism could drive sliding between microtubules, and also has implications for cytoplasmic cargo transport.


Subject(s)
Adenosine Triphosphate/chemistry , Axonemal Dyneins/chemistry , Chlamydomonas reinhardtii/enzymology , Dictyostelium/enzymology , Adenosine Diphosphate/chemistry , Axonemal Dyneins/ultrastructure , Axoneme/ultrastructure , Cryoelectron Microscopy , Microscopy, Video , Microtubules/chemistry , Microtubules/ultrastructure , Models, Molecular , Plant Proteins/chemistry , Plant Proteins/ultrastructure , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/ultrastructure , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...