Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 5(7): e156, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17579514

ABSTRACT

The adult human intestine contains trillions of bacteria, representing hundreds of species and thousands of subspecies. Little is known about the selective pressures that have shaped and are shaping this community's component species, which are dominated by members of the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment affects microbial genome evolution, we have sequenced the genomes of two members of the normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their niche and habitat adaptations. The results show that lateral gene transfer, mobile elements, and gene amplification have played important roles in affecting the ability of gut-dwelling Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient resources present in the distal intestine. Our findings show that these processes have been a driving force in the adaptation of Bacteroidetes to the distal gut environment, and emphasize the importance of considering the evolution of humans from an additional perspective, namely the evolution of our microbiomes.


Subject(s)
Bacteroides/genetics , Evolution, Molecular , Intestines/microbiology , Symbiosis/genetics , Adaptation, Physiological , Bacteriophages/genetics , Bacteroides/physiology , Bacteroides/virology , Conjugation, Genetic , DNA Transposable Elements , Ecosystem , Gene Duplication , Gene Transfer, Horizontal , Genetic Variation , Genome, Bacterial , Humans , Molecular Sequence Data , Phylogeny , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Species Specificity
2.
PLoS Biol ; 4(5): e127, 2006 May.
Article in English | MEDLINE | ID: mdl-16620150

ABSTRACT

The genetic code provides the translation table necessary to transform the information contained in DNA into the language of proteins. In this table, a correspondence between each codon and each amino acid is established: tRNA is the main adaptor that links the two. Although the genetic code is nearly universal, several variants of this code have been described in a wide range of nuclear and organellar systems, especially in metazoan mitochondria. These variants are generally found by searching for conserved positions that consistently code for a specific alternative amino acid in a new species. We have devised an accurate computational method to automate these comparisons, and have tested it with 626 metazoan mitochondrial genomes. Our results indicate that several arthropods have a new genetic code and translate the codon AGG as lysine instead of serine (as in the invertebrate mitochondrial genetic code) or arginine (as in the standard genetic code). We have investigated the evolution of the genetic code in the arthropods and found several events of parallel evolution in which the AGG codon was reassigned between serine and lysine. Our analyses also revealed correlated evolution between the arthropod genetic codes and the tRNA-Lys/-Ser, which show specific point mutations at the anticodons. These rather simple mutations, together with a low usage of the AGG codon, might explain the recurrence of the AGG reassignments.


Subject(s)
Arthropods/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Genes, Mitochondrial/genetics , Genetic Code/genetics , Animals , Codon , Computer Simulation , Models, Genetic , Phylogeny , RNA, Transfer/genetics
3.
J Proteome Res ; 5(3): 709-19, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16512687

ABSTRACT

An important strategy for "shotgun proteomics" profiling involves solution proteolysis of proteins, followed by peptide separation using multidimensional liquid chromatography and automated sequencing by mass spectrometry (LC-MS/MS). Several protocols for extracting and handling membrane proteins for shotgun proteomics experiments have been reported, but few direct comparisons of different protocols have been reported. We compare four methods for preparing membrane proteins from human cells, using acid labile surfactants (ALS), urea, and mixed organic-aqueous solvents. These methods were compared with respect to their efficiency of protein solubilization and proteolysis, peptide and protein recovery, membrane protein enrichment, and peptide coverage of transmembrane proteins. Overall, approximately 50-60% of proteins recovered were membrane-associated, identified from Gene Ontology annotations and transmembrane prediction software. Samples extracted with ALS, extracted with urea followed by dilution, or extracted with urea followed by desalting yielded comparable peptide recoveries and sequence coverage of transmembrane proteins. In contrast, suboptimal proteolysis was observed with organic solvent. Urea extraction followed by desalting may be a particularly useful approach, as it is less costly than ALS and yields satisfactory protein denaturation and proteolysis under conditions that minimize reactivity with urea-derived cyanate. Spectral counting was used to compare datasets of proteins from membrane samples with those of soluble proteins from K562 cells, and to estimate fold differences in protein abundances. Proteins most highly abundant in the membrane samples showed enrichment of integral membrane protein identifications, consistent with their isolation by differential centrifugation.


Subject(s)
Cell Extracts/analysis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Membrane Proteins/analysis , Neoplasm Proteins/chemistry , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Humans , K562 Cells , Neoplasm Proteins/analysis , Tandem Mass Spectrometry
4.
Proc Natl Acad Sci U S A ; 102(31): 11070-5, 2005 Aug 02.
Article in English | MEDLINE | ID: mdl-16033867

ABSTRACT

We have analyzed 5,088 bacterial 16S rRNA gene sequences from the distal intestinal (cecal) microbiota of genetically obese ob/ob mice, lean ob/+ and wild-type siblings, and their ob/+ mothers, all fed the same polysaccharide-rich diet. Although the majority of mouse gut species are unique, the mouse and human microbiota(s) are similar at the division (superkingdom) level, with Firmicutes and Bacteroidetes dominating. Microbial-community composition is inherited from mothers. However, compared with lean mice and regardless of kinship, ob/ob animals have a 50% reduction in the abundance of Bacteroidetes and a proportional increase in Firmicutes. These changes, which are division-wide, indicate that, in this model, obesity affects the diversity of the gut microbiota and suggest that intentional manipulation of community structure may be useful for regulating energy balance in obese individuals. The sequences reported in this paper have been deposited in the GenBank database [accession nos. DQ 014552--DQ 015671 (mothers) and AY 989911--AY 993908 (offspring)].


Subject(s)
Intestines/microbiology , Obesity/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Base Sequence , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , DNA/genetics , Ecosystem , Female , Genes, Bacterial , Humans , Mice , Mice, Inbred C57BL , Mice, Obese , Molecular Sequence Data , Obesity/etiology , Pregnancy , RNA, Ribosomal, 16S/genetics
5.
Anal Chem ; 76(13): 3556-68, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15228325

ABSTRACT

Identifying proteins in cell extracts by shotgun proteomics involves digesting the proteins, sequencing the resulting peptides by data-dependent mass spectrometry (MS/MS), and searching protein databases to identify the proteins from which the peptides are derived. Manual analysis and direct spectral comparison reveal that scores from two commonly used search programs (Sequest and Mascot) validate less than half of potentially identifiable MS/MS spectra (class positive) from shotgun analyses of the human erythroleukemia K562 cell line. Here we demonstrate increased sensitivity and accuracy using a focused search strategy along with a peptide sequence validation script that does not rely exclusively on XCorr or Mowse scores generated by Sequest or Mascot, but uses consensus between the search programs, along with chemical properties and scores describing the nature of the fragmentation spectrum (ion score and RSP). The approach yielded 4.2% false positive and 8% false negative frequencies in peptide assignments. The protein profile is then assembled from peptide assignments using a novel peptide-centric protein nomenclature that more accurately reports protein variants that contain identical peptide sequences. An Isoform Resolver algorithm ensures that the protein count is not inflated by variants in the protein database, eliminating approximately 25% of redundant proteins. Analysis of soluble proteins from a human K562 cells identified 5130 unique proteins, with approximately 100 false positive protein assignments.


Subject(s)
Proteins/chemistry , Proteomics/methods , Cell Line, Tumor , Humans , K562 Cells , Mass Spectrometry/methods , Peptides/chemistry , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...