Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 13(4): 637-40, 2003 Feb 24.
Article in English | MEDLINE | ID: mdl-12639547

ABSTRACT

We have identified a novel class of 6-thiazolylquinazolines as potent and selective inhibitors of both ErbB-2 and EGFR tyrosine kinase activity, with IC(50) values in the nanomolar range. These compounds inhibited the growth of both EGFR (HN5) and ErbB-2 (BT474) over-expressing human tumor cell lines in vitro. Using xenograft models of the same cell lines, we found that the compounds given orally inhibited in vivo tumor growth significantly compared with control animals.


Subject(s)
Antineoplastic Agents/chemical synthesis , ErbB Receptors/antagonists & inhibitors , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Receptor, ErbB-2/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Female , Humans , Inhibitory Concentration 50 , Mice , Mice, Inbred Strains , Neoplasms, Experimental/drug therapy , Quinazolines/pharmacology , Structure-Activity Relationship , Transplantation, Heterologous
2.
J Biol Chem ; 277(2): 1576-85, 2002 Jan 11.
Article in English | MEDLINE | ID: mdl-11696537

ABSTRACT

Epidermal growth factor receptor (EGFR), ErbB-2, and ErbB-4 are members of the type 1 receptor tyrosine kinase family. Overexpression of these receptors, especially ErbB-2 and EGFR, has been implicated in multiple forms of cancer. Inhibitors of EGFR tyrosine kinase activity are being evaluated clinically for cancer therapy. The potency and selectivity of these inhibitors may affect the efficacy and toxicity of therapy. Here we describe the expression, purification, and biochemical comparison of EGFR, ErbB-2, and ErbB-4 intracellular domains. Despite their high degree of sequence homology, the three enzymes have significantly different catalytic properties and substrate kinetics. For example, the catalytic activity of ErbB-2 is less stable than that of EGFR. ErbB-2 uses ATP-Mg as a substrate inefficiently compared with EGFR and ErbB-4. The three enzymes have very similar substrate preferences for three optimized peptide substrates, but differences in substrate synergies were observed. We have used the biochemical and kinetic parameters determined from these studies to develop an assay system that accurately measures inhibitor potency and selectivity between the type 1 receptor family. We report that the selectivity profile of molecules in the 4-anilinoquinazoline series can be modified through specific aniline substitutions. Moreover, these compounds have activity in whole cells that reflect the potency and selectivity of target inhibition determined with this assay system.


Subject(s)
ErbB Receptors/chemistry , ErbB Receptors/metabolism , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Adenosine Triphosphate/metabolism , Baculoviridae/genetics , Baculoviridae/metabolism , Cations, Divalent/metabolism , Cell Line , Cloning, Molecular , Humans , Kinetics , Molecular Structure , Phosphorylation , Protein Structure, Tertiary , Receptor, ErbB-4
SELECTION OF CITATIONS
SEARCH DETAIL
...