Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 18(31): 21296-304, 2016 Aug 03.
Article in English | MEDLINE | ID: mdl-27424548

ABSTRACT

In this paper the short and long range order in In0.483Ga0.517P thin films is investigated by solid-state Nuclear Magnetic Resonance (NMR) spectroscopy. To this end two samples were grown on a GaAs substrate by metal-organic vapor phase epitaxy at two different growth-pressures. From band gap energy measurements, CuPt long range order parameters of SCuPt = 0.22 and 0.39 were deduced, respectively. In the (31)P spectrum five resonances are observed corresponding to the five possible P(GanIn4-n), n = 0-4, coordinations whose relative intensities correspond to the order in the material, but the intensity variations for order parameters between 0 and 0.5 are minimal. (69)Ga, (71)Ga and (115)In (MQ)MAS spectra were acquired to analyze the quadrupolar and chemical shift distributions related to the (dis)order in these materials in more detail. All these spectra clearly reflect the disorder in the sample and do not show the presence of highly ordered domains. The difference in the order parameter in the sample is not clearly reflected in the spectra. (31)P chemical shifts were calculated using Density Functional Theory. The experimentally observed shifts are well reproduced with a simple random model of the disorder, thus confirming the assignment of the resonances. The (31)P chemical shifts are very sensitive to changes in the lattice parameter and chemical surroundings. These effects nearly compensate and explain why the (31)P chemical shifts in pure InP and GaP are nearly identical whereas a large difference would be expected based on the observed shift difference for the P[In4] and P[Ga4] coordinations in In0.483Ga0.517P.

2.
J Chem Phys ; 128(5): 052202, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-18266407

ABSTRACT

The predominant means to detect nuclear magnetic resonance (NMR) is to monitor the voltage induced in a radiofrequency coil by the precessing magnetization. To address the sensitivity of NMR for mass-limited samples it is worthwhile to miniaturize this detector coil. Although making smaller coils seems a trivial step, the challenges in the design of microcoil probeheads are to get the highest possible sensitivity while maintaining high resolution and keeping the versatility to apply all known NMR experiments. This means that the coils have to be optimized for a given sample geometry, circuit losses should be avoided, susceptibility broadening due to probe materials has to be minimized, and finally the B(1)-fields generated by the rf coils should be homogeneous over the sample volume. This contribution compares three designs that have been miniaturized for NMR detection: solenoid coils, flat helical coils, and the novel stripline and microslot designs. So far most emphasis in microcoil research was in liquid-state NMR. This contribution gives an overview of the state of the art of microcoil solid-state NMR by reviewing literature data and showing the latest results in the development of static and micro magic angle spinning (microMAS) solenoid-based probeheads. Besides their mass sensitivity, microcoils can also generate tremendously high rf fields which are very useful in various solid-state NMR experiments. The benefits of the stripline geometry for studying thin films are shown. This geometry also proves to be a superior solution for microfluidic NMR implementations in terms of sensitivity and resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...