Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 3711, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842456

ABSTRACT

The ability to measure the voltage readout from a sensor implanted inside the living cochlea enables continuous monitoring of intracochlear acoustic pressure locally, which could improve cochlear implants. We developed a piezoelectric intracochlear acoustic transducer (PIAT) designed to sense the acoustic pressure while fully implanted inside a living guinea pig cochlea. The PIAT, fabricated using micro-electro-mechanical systems (MEMS) techniques, consisted of an array of four piezoelectric cantilevers with varying lengths to enhance sensitivity across a wide frequency bandwidth. Prior to implantation, benchtop tests were conducted to characterize the device performance in air and in water. When implanted in the cochlea of an anesthetized guinea pig, the in vivo voltage response from the PIAT was measured in response to 80-95 dB sound pressure level 1-14 kHz sinusoidal acoustic excitation at the entrance of the guinea pig's ear canal. All sensed signals were above the noise floor and unaffected by crosstalk from the cochlear microphonic or external electrical interference. These results demonstrate that external acoustic stimulus can be sensed via the piezoelectric voltage response of the implanted MEMS transducer inside the living cochlea, providing key steps towards developing intracochlear acoustic sensors to replace external or subcutaneous microphones for auditory prosthetics.


Subject(s)
Acoustic Stimulation/methods , Cochlear Implantation/methods , Piezosurgery/methods , Acoustics/instrumentation , Animals , Cochlea/physiology , Cochlear Implants , Ear Canal/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Guinea Pigs/physiology , Sound , Transducers
2.
J Acoust Soc Am ; 131(1): 292-302, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22280592

ABSTRACT

Acoustic diffraction allows sound to travel around opaque objects and therefore may allow beyond-line-of-sight sensing of remote sound sources. This paper reports simulated and experimental results for localizing sound sources based on fully shadowed microphone array measurements. The generic geometry includes a point source, a solid 90° wedge, and a receiving array that lies entirely in the shadow defined by the source location and the wedge. Source localization performance is assessed via matched-field (MF) ambiguity surfaces as a function of receiving array configuration, and received signal-to-noise ratio for the Bartlett and minimum variance distortionless (MVD) MF processors. Here, the sound propagation model is developed from a Green's function integral treatment. A simple 16 element line array of microphones is tested in three mutually orthogonal orientations. The experiments were conducted using an approximate 50-to-1-scaled tabletop model of a blind city-street intersection and produced ambiguity surfaces from source frequencies between 17.5 and 19 kHz that were incoherently summed. The experimental results suggest that a sound source may be localized by the MVD processor when using fully shadowed arrays that have significant aperture parallel to the edge of the wedge. However, this performance is reduced significantly for signal-to-noise ratios below 40 dB.

SELECTION OF CITATIONS
SEARCH DETAIL
...