Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 587: 143-169, 2017.
Article in English | MEDLINE | ID: mdl-28253953

ABSTRACT

LC3/GABARAP proteins (LC3/GABARAPs) are mammalian orthologues of yeast Atg8, small ubiquitin (Ub)-like proteins (UBLs) whose covalent attachment to lipid membranes is crucial for the growth and closure of the double membrane vesicle called the autophagosome. In the past decade, it was demonstrated that Atg8/LC3/GABARAPs are also required for autophagic degradation of cargos in a selective fashion. Cargo selectivity is ensured by receptor proteins, such as p62/SQSTM1, NBR1, Cue5, Atg19, NIX, Atg32, NCOA4, and FAM134B, which simultaneously bind Atg8/LC3/GABARAPs and the cargo together, thereby linking the core autophagic machinery to the target structure: a protein, an organelle, or a pathogen. LC3-interacting regions (LIRs) are short linear motifs within selective autophagy receptors and some other structural and signaling proteins (e.g., ULK1, ATG13, FIP200, and Dvl2), which mediate binding to Atg8/LC3/GABARAPs. Identification and characterization of LIR-containing proteins have provided important insights into the biology of the autophagy pathway, and studying their interactions with the core autophagy machinery represents a growing area of autophagy research. Here, we present protocols for the identification of LIR-containing proteins, i.e., by yeast-two-hybrid screening, glutathione S-transferase (GST) pulldown experiments, and peptide arrays. The use of two-dimensional peptide arrays also represents a powerful method to identify the residues of the LIR motif that are critical for binding. We also describe a biophysical method for studying interactions between Atg8/LC3/GABARAP and LIR-containing proteins and a protocol for preparation and purification of LIR peptides.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy-Related Protein 8 Family/metabolism , Microtubule-Associated Proteins/metabolism , Protein Interaction Mapping/methods , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , Apoptosis Regulatory Proteins , Autophagy-Related Protein 8 Family/genetics , Calorimetry/methods , Escherichia coli/genetics , Microtubule-Associated Proteins/genetics , Two-Hybrid System Techniques
2.
J Theor Biol ; 300: 91-9, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22286016

ABSTRACT

Iron is a metal essential for cellular metabolism. However, excess iron available for reactions contributes to the formation of dangerous reactive oxygen species, such as the hydroxyl radical, via the Fenton reaction. Therefore, intracellular iron levels are tightly constrained by a control system of proteins. This paper contains a mathematical model, in the form of a system of five ordinary differential equations, of the core of this control system, including the labile iron pool as well as proteins that regulate uptake, storage, and export and are connected through negative feedback loops. The model is validated using data from an overexpression experiment with cultured human breast epithelial cells. The parameters in the mathematical model are not known for this particular cell culture system, so the analysis of the model was done for a generic choice of parameters. Through a mixture of analytical arguments and extensive simulations it is shown that for any choice of parameters the model reaches a unique stable steady state, thereby ruling out oscillatory behavior. It is shown furthermore that the model parameters are identifiable through suitable experiments.


Subject(s)
Breast/metabolism , Homeostasis/physiology , Iron/metabolism , Models, Biological , Breast/cytology , Cells, Cultured , Epithelial Cells/metabolism , Feedback, Physiological/physiology , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...