Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(1): e55665, 2013.
Article in English | MEDLINE | ID: mdl-23383259

ABSTRACT

Apoptosis, autophagy, necrosis and cellular senescence are key responses of cells that were exposed to genotoxicants. The types of DNA damage triggering these responses and their interrelationship are largely unknown. Here we studied these responses in glioma cells treated with the methylating agent temozolomide (TMZ), which is a first-line chemotherapeutic for this malignancy. We show that upon TMZ treatment cells undergo autophagy, senescence and apoptosis in a specific time-dependent manner. Necrosis was only marginally induced. All these effects were completely abrogated in isogenic glioma cells expressing O(6)-methylguanine-DNA methyltransferase (MGMT), indicating that a single type of DNA lesion, O(6)-methylguanine (O(6)MeG), is able to trigger all these responses. Studies with mismatch repair mutants and MSH6, Rad51 and ATM knockdowns revealed that autophagy induced by O(6)MeG requires mismatch repair and ATM, and is counteracted by homologous recombination. We further show that autophagy, which precedes apoptosis, is a survival mechanism as its inhibition greatly ameliorated the level of apoptosis following TMZ at therapeutically relevant doses (<100 µM). Cellular senescence increases with post-exposure time and, similar to autophagy, precedes apoptosis. If autophagy was abrogated, TMZ-induced senescence was reduced. Therefore, we propose that autophagy triggered by O(6)MeG adducts is a survival mechanism that stimulates cells to undergo senescence rather than apoptosis. Overall, the data revealed that a specific DNA adduct, O(6)MeG, has the capability of triggering autophagy, senescence and apoptosis and that the decision between survival and death is determined by the balance of players involved. The data also suggests that inhibition of autophagy may ameliorate the therapeutic outcome of TMZ-based cancer therapy.


Subject(s)
Antineoplastic Agents, Alkylating/toxicity , DNA Damage/drug effects , Dacarbazine/analogs & derivatives , Glioma/genetics , Apoptosis/drug effects , Apoptosis/genetics , Ataxia Telangiectasia Mutated Proteins , Autophagy/drug effects , Autophagy/genetics , Cell Cycle Proteins/metabolism , Cell Death/drug effects , Cell Death/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cellular Senescence/genetics , DNA Mismatch Repair , DNA Modification Methylases/metabolism , DNA-Binding Proteins/metabolism , Dacarbazine/toxicity , Glioma/metabolism , Guanine/analogs & derivatives , Guanine/metabolism , Homologous Recombination , Humans , Protein Serine-Threonine Kinases/metabolism , Temozolomide , Tumor Suppressor Proteins/metabolism
2.
J Cell Biochem ; 113(1): 360-71, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21928324

ABSTRACT

The small G-protein ADP-ribosylation factor 6 (Arf6) belongs to the Ras GTPases superfamily and is mostly known for its actin remodeling functions and involvement in the processes of plasma membrane reorganization and vesicular transport. The majority of data indicates that Arf6 contributes to cancer progression through activation of cell motility and invasion. Alternatively, we found that the expression of a wild-type or a constitutively active Arf6 does not influence tumor cell motility and invasion but instead significantly stimulates cell proliferation and activates phospholipase D (PLD). Conversely the expression of a mutant Arf6 (Arf6N48I), that is, unable to interact with PLD has no effect on proliferation but promotes motility, invasion, and matrix degradation by uPA extracellular proteinase. Studying the mechanisms of Arf6-dependent stimulation of cell proliferation, we found some signaling pathways contributing to Arf6 promitogenic activity. Namely, we showed that Arf6 in a PLD-mTORC1-dependent manner activates S6K1 kinase, a well-known regulator of mitogen-stimulated translation initiation. Furthermore, we demonstrated an Arf6-dependent phosphorylation of mTORC1 downstream targets, 4E-BP1 and ribosomal S6 protein, confirming an existence of Arf6-PLD-mTORC1-S6K1/4E-BP1 signaling pathway and also demonstrated its impact on proliferation stimulation. Next, we found that Arf6 activation potentiates Erk1/2 and p38MAP kinases phosphorylation. Surprisingly, p38 opposite to Erk1/2 significantly contributes to Arf6-dependent proliferation increase promoting S6 ribosomal protein phosphorylation at Ser235/236 residues. Therefore, we demonstrated Arf6 proliferation stimulating activity and revealed PLD-mTORC1 and p38MAP kinase as Arf6 partners mediating promitogenic activity. These results highlight a new aspect of Arf6 functioning in cancer cell biology.


Subject(s)
ADP-Ribosylation Factors/metabolism , Cell Proliferation , TOR Serine-Threonine Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , ADP-Ribosylation Factor 6 , Animals , Cell Movement , Cricetinae , MAP Kinase Signaling System , Neoplasm Invasiveness , Neoplasms/metabolism , Ribosomal Protein S6/genetics , Ribosomal Protein S6/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , p38 Mitogen-Activated Protein Kinases/genetics
3.
Cancer Cell Int ; 11(1): 22, 2011 Jun 29.
Article in English | MEDLINE | ID: mdl-21714887

ABSTRACT

BACKGROUND: Previously we have shown that oncogenic Ha-Ras stimulated in vivo metastasis through RalGEF-Ral signaling. RalA and RalB are highly homologous small G proteins belonging to Ras superfamily. They can be activated by Ras-RalGEF signaling pathway and influence cellular growth and survival, motility, vesicular transport and tumor progression in humans and in animal models. Here we first time compared the influence of RalA and RalB on tumorigenic, invasive and metastatic properties of RSV transformed hamster fibroblasts. METHODS: Retroviral vectors encoding activated forms or effector mutants of RalA or RalB proteins were introduced into the low metastatic HET-SR cell line. Tumor growth and spontaneous metastatic activity (SMA) were evaluated on immunocompetent hamsters after subcutaneous injection of cells. The biological properties of cells, including proliferation, clonogenicity, migration and invasion were determined using MTT, wound healing, colony formation and Boyden chamber assays respectively. Protein expression and phosphorylation was detected by Westen blot analysis. Extracellular proteinases activity was assessed by substrate-specific zymography. RESULTS: We have showed that although both Ral proteins stimulated SMA, RalB was more effective in metastasis stimulation in vivo as well as in potentiating of directed movement and invasion in vitro. Simultaneous expression of active RalA and RalB didn't give synergetic effect on metastasis formation. RalB activity decreased expression of Caveolin-1, while active RalA stimulated MMP-1 and uPA proteolytic activity, as well as CD24 expression. Both Ral proteins were capable of Cyclin D1 upregulation, JNK1 kinase activation, and stimulation of colony growth and motility. Among three main RalB effectors (RalBP1, exocyst complex and PLD1), PLD1 was essential for RalB-dependent metastasis stimulation. CONCLUSIONS: Presented results are the first data on direct comparison of RalA and RalB impact as well as of RalA/RalB simultaneous expression influence on in vivo cell metastatic activity. We showed that RalB activation significantly more than RalA stimulates SMA. This property correlates with the ability of RalB to stimulate in vitro invasion and serum directed cell movement. We also found that RalB-PLD1 interaction is necessary for the acquisition of RalB-dependent high metastatic cell phenotype. These findings contribute to the identification of molecular mechanisms of metastasis and tumor progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...