Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters










Publication year range
1.
Neuron ; 112(11): 1730-1732, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38843779

ABSTRACT

In a recent issue of Nature, Chen and colleagues1 reveal the potential for antisense oligonucleotides (ASOs) to rescue the neuropathological mechanisms underlying Timothy syndrome (TS) using three-dimensional neuronal models. Combining in vitro and in vivo approaches, the authors present a strategy to translate disease biology findings into potential therapeutics.


Subject(s)
Autistic Disorder , Long QT Syndrome , Neurons , Syndactyly , Humans , Autistic Disorder/genetics , Autistic Disorder/pathology , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Syndactyly/genetics , Oligonucleotides, Antisense/pharmacology , Animals
3.
Nature ; 621(7978): 373-380, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37704762

ABSTRACT

The development of the human brain involves unique processes (not observed in many other species) that can contribute to neurodevelopmental disorders1-4. Cerebral organoids enable the study of neurodevelopmental disorders in a human context. We have developed the CRISPR-human organoids-single-cell RNA sequencing (CHOOSE) system, which uses verified pairs of guide RNAs, inducible CRISPR-Cas9-based genetic disruption and single-cell transcriptomics for pooled loss-of-function screening in mosaic organoids. Here we show that perturbation of 36 high-risk autism spectrum disorder genes related to transcriptional regulation uncovers their effects on cell fate determination. We find that dorsal intermediate progenitors, ventral progenitors and upper-layer excitatory neurons are among the most vulnerable cell types. We construct a developmental gene regulatory network of cerebral organoids from single-cell transcriptomes and chromatin modalities and identify autism spectrum disorder-associated and perturbation-enriched regulatory modules. Perturbing members of the BRG1/BRM-associated factor (BAF) chromatin remodelling complex leads to enrichment of ventral telencephalon progenitors. Specifically, mutating the BAF subunit ARID1B affects the fate transition of progenitors to oligodendrocyte and interneuron precursor cells, a phenotype that we confirmed in patient-specific induced pluripotent stem cell-derived organoids. Our study paves the way for high-throughput phenotypic characterization of disease susceptibility genes in organoid models with cell state, molecular pathway and gene regulatory network readouts.


Subject(s)
Autism Spectrum Disorder , Brain , Developmental Disabilities , Organoids , Single-Cell Gene Expression Analysis , Humans , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Autistic Disorder/complications , Autistic Disorder/genetics , Autistic Disorder/pathology , Brain/cytology , Brain/metabolism , Cell Lineage/genetics , Chromatin/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Developmental Disabilities/complications , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Gene Editing , Loss of Function Mutation , Mosaicism , Neurons/metabolism , Neurons/pathology , Organoids/cytology , Organoids/metabolism , RNA, Guide, CRISPR-Cas Systems , Transcription, Genetic
4.
Adv Mater ; 35(41): e2300305, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572376

ABSTRACT

3D organoids are widely used as tractable in vitro models capable of elucidating aspects of human development and disease. However, the manual and low-throughput culture methods, coupled with a low reproducibility and geometric heterogeneity, restrict the scope and application of organoid research. Combining expertise from stem cell biology and bioengineering offers a promising approach to address some of these limitations. Here, melt electrospinning writing is used to generate tuneable grid scaffolds that can guide the self-organization of pluripotent stem cells into patterned arrays of embryoid bodies. Grid geometry is shown to be a key determinant of stem cell self-organization, guiding the position and size of emerging lumens via curvature-controlled tissue growth. Two distinct methods for culturing scaffold-grown embryoid bodies into either interconnected or spatially discrete cerebral organoids are reported. These scaffolds provide a high-throughput method to generate, culture, and analyze large numbers of organoids, substantially reducing the time investment and manual labor involved in conventional methods of organoid culture. It is anticipated that this methodological development will open up new opportunities for guiding pluripotent stem cell culture, studying lumenogenesis, and generating large numbers of uniform organoids for high-throughput screening.


Subject(s)
Organoids , Pluripotent Stem Cells , Humans , Reproducibility of Results , Brain
5.
EMBO Mol Med ; 15(3): e16959, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36740985

ABSTRACT

The natural compound Artemisinin is the most widely used antimalarial drug worldwide. Based on its cytotoxicity, it is also used for anticancer therapy. Artemisinin and its derivates are endoperoxides that damage proteins in eukaryotic cells; their definite mechanism of action and host cell targets, however, have remained largely elusive. Using yeast and haploid stem cell screening, we demonstrate that a single cellular pathway, namely porphyrin (heme) biosynthesis, is required for the cytotoxicity of Artemisinins. Genetic or pharmacological modulation of porphyrin production is sufficient to alter its cytotoxicity in eukaryotic cells. Using multiple model systems of human brain tumor development, such as cerebral glioblastoma organoids, and patient-derived tumor spheroids, we sensitize cancer cells to dihydroartemisinin using the clinically approved porphyrin enhancer and surgical fluorescence marker 5-aminolevulinic acid, 5-ALA. A combination treatment of Artemisinins and 5-ALA markedly and specifically killed brain tumor cells in all model systems tested, including orthotopic patient-derived xenografts in vivo. These data uncover the critical molecular pathway for Artemisinin cytotoxicity and a sensitization strategy to treat different brain tumors, including drug-resistant human glioblastomas.


Subject(s)
Antimalarials , Artemisinins , Brain Neoplasms , Humans , Artemisinins/pharmacology , Artemisinins/therapeutic use , Antimalarials/pharmacology , Heme/metabolism , Aminolevulinic Acid , Brain Neoplasms/drug therapy
6.
Nat Rev Neurol ; 18(11): 661-680, 2022 11.
Article in English | MEDLINE | ID: mdl-36253568

ABSTRACT

The current understanding of neurological diseases is derived mostly from direct analysis of patients and from animal models of disease. However, most patient studies do not capture the earliest stages of disease development and offer limited opportunities for experimental intervention, so rarely yield complete mechanistic insights. The use of animal models relies on evolutionary conservation of pathways involved in disease and is limited by an inability to recreate human-specific processes. In vitro models that are derived from human pluripotent stem cells cultured in 3D have emerged as a new model system that could bridge the gap between patient studies and animal models. In this Review, we summarize how such organoid models can complement classical approaches to accelerate neurological research. We describe our current understanding of neurodevelopment and how this process differs between humans and other animals, making human-derived models of disease essential. We discuss different methodologies for producing organoids and how organoids can be and have been used to model neurological disorders, including microcephaly, Zika virus infection, Alzheimer disease and other neurodegenerative disorders, and neurodevelopmental diseases, such as Timothy syndrome, Angelman syndrome and tuberous sclerosis. We also discuss the current limitations of organoid models and outline how organoids can be used to revolutionize research into the human brain and neurological diseases.


Subject(s)
Microcephaly , Neurodegenerative Diseases , Neurology , Zika Virus Infection , Zika Virus , Animals , Humans , Organoids/metabolism , Brain/metabolism , Neurodegenerative Diseases/metabolism
7.
EMBO J ; 41(17): e111118, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35919947

ABSTRACT

Organoids enable in vitro modeling of complex developmental processes and disease pathologies. Like most 3D cultures, organoids lack sufficient oxygen supply and therefore experience cellular stress. These negative effects are particularly prominent in complex models, such as brain organoids, and can affect lineage commitment. Here, we analyze brain organoid and fetal single-cell RNA sequencing (scRNAseq) data from published and new datasets, totaling about 190,000 cells. We identify a unique stress signature in the data from all organoid samples, but not in fetal samples. We demonstrate that cell stress is limited to a defined subpopulation of cells that is unique to organoids and does not affect neuronal specification or maturation. We have developed a computational algorithm, Gruffi, which uses granular functional filtering to identify and remove stressed cells from any organoid scRNAseq dataset in an unbiased manner. We validated our method using six additional datasets from different organoid protocols and early brains, and show its usefulness to other organoid systems including retinal organoids. Our data show that the adverse effects of cell stress can be corrected by bioinformatic analysis for improved delineation of developmental trajectories and resemblance to in vivo data.


Subject(s)
Organoids , Transcriptome , Algorithms , Brain , Computational Biology
8.
Cell ; 185(15): 2756-2769, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35868278

ABSTRACT

For decades, insight into fundamental principles of human biology and disease has been obtained primarily by experiments in animal models. While this has allowed researchers to understand many human biological processes in great detail, some developmental and disease mechanisms have proven difficult to study due to inherent species differences. The advent of organoid technology more than 10 years ago has established laboratory-grown organ tissues as an additional model system to recapitulate human-specific aspects of biology. The use of human 3D organoids, as well as other advances in single-cell technologies, has revealed unprecedented insights into human biology and disease mechanisms, especially those that distinguish humans from other species. This review highlights novel advances in organoid biology with a focus on how organoid technology has generated a better understanding of human-specific processes in development and disease.


Subject(s)
Models, Biological , Organoids , Animals , Humans
9.
EMBO J ; 40(23): e108714, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34661293

ABSTRACT

Inhibitory GABAergic interneurons migrate over long distances from their extracortical origin into the developing cortex. In humans, this process is uniquely slow and prolonged, and it is unclear whether guidance cues unique to humans govern the various phases of this complex developmental process. Here, we use fused cerebral organoids to identify key roles of neurotransmitter signaling pathways in guiding the migratory behavior of human cortical interneurons. We use scRNAseq to reveal expression of GABA, glutamate, glycine, and serotonin receptors along distinct maturation trajectories across interneuron migration. We develop an image analysis software package, TrackPal, to simultaneously assess 48 parameters for entire migration tracks of individual cells. By chemical screening, we show that different modes of interneuron migration depend on distinct neurotransmitter signaling pathways, linking transcriptional maturation of interneurons with their migratory behavior. Altogether, our study provides a comprehensive quantitative analysis of human interneuron migration and its functional modulation by neurotransmitter signaling.


Subject(s)
Cell Movement , Cerebral Cortex/physiology , Interneurons/physiology , Neurotransmitter Agents/metabolism , Organoids/physiology , Cerebral Cortex/cytology , HEK293 Cells , Humans , Interneurons/cytology , Neurogenesis , Organoids/cytology , RNA-Seq , Single-Cell Analysis
11.
Cell ; 182(6): 1490-1507.e19, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32916131

ABSTRACT

Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.


Subject(s)
Brain Neoplasms/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism , Mitochondrial Dynamics , NAD/metabolism , Neoplastic Stem Cells/metabolism , Neural Stem Cells/metabolism , Oxidative Phosphorylation , Animals , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , Citric Acid Cycle/genetics , Computational Biology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Glycolysis/genetics , Mass Spectrometry , Metabolomics , Microscopy, Electron, Transmission , Multigene Family , Neural Stem Cells/pathology , Oxygen Consumption/genetics , RNA Interference , Reactive Oxygen Species/metabolism , Single-Cell Analysis , Transcriptome/genetics
12.
Nat Rev Mol Cell Biol ; 21(10): 571-584, 2020 10.
Article in English | MEDLINE | ID: mdl-32636524

ABSTRACT

The historical reliance of biological research on the use of animal models has sometimes made it challenging to address questions that are specific to the understanding of human biology and disease. But with the advent of human organoids - which are stem cell-derived 3D culture systems - it is now possible to re-create the architecture and physiology of human organs in remarkable detail. Human organoids provide unique opportunities for the study of human disease and complement animal models. Human organoids have been used to study infectious diseases, genetic disorders and cancers through the genetic engineering of human stem cells, as well as directly when organoids are generated from patient biopsy samples. This Review discusses the applications, advantages and disadvantages of human organoids as models of development and disease and outlines the challenges that have to be overcome for organoids to be able to substantially reduce the need for animal experiments.


Subject(s)
Biology/methods , Medicine/methods , Organoids/physiology , Animals , Communicable Diseases/pathology , Genetic Diseases, Inborn/pathology , Genetic Engineering/methods , Humans , Neoplasms/pathology , Stem Cells/physiology
13.
Dev Cell ; 52(3): 251-252, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32049033

ABSTRACT

Drosophila neural progenitors require the transcriptional repressor Prospero to promptly establish the neuronal fate of their daughter cells to avoid tumorigenesis. In this issue of Developmental Cell, Liu et al. (2020) find that Prospero is mitotically implanted and forms liquid-like droplets mediating HP1a condensation to permanently repress its targets.


Subject(s)
Drosophila Proteins , Transcription Factors , Animals , Cell Differentiation , Nerve Tissue Proteins , Nuclear Proteins
14.
Nature ; 565(7740): 505-510, 2019 01.
Article in English | MEDLINE | ID: mdl-30651639

ABSTRACT

The increasing prevalence of diabetes has resulted in a global epidemic1. Diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and amputation of lower limbs. These are often caused by changes in blood vessels, such as the expansion of the basement membrane and a loss of vascular cells2-4. Diabetes also impairs the functions of endothelial cells5 and disturbs the communication between endothelial cells and pericytes6. How dysfunction of endothelial cells and/or pericytes leads to diabetic vasculopathy remains largely unknown. Here we report the development of self-organizing three-dimensional human blood vessel organoids from pluripotent stem cells. These human blood vessel organoids contain endothelial cells and pericytes that self-assemble into capillary networks that are enveloped by a basement membrane. Human blood vessel organoids transplanted into mice form a stable, perfused vascular tree, including arteries, arterioles and venules. Exposure of blood vessel organoids to hyperglycaemia and inflammatory cytokines in vitro induces thickening of the vascular basement membrane. Human blood vessels, exposed in vivo to a diabetic milieu in mice, also mimic the microvascular changes found in patients with diabetes. DLL4 and NOTCH3 were identified as key drivers of diabetic vasculopathy in human blood vessels. Therefore, organoids derived from human stem cells faithfully recapitulate the structure and function of human blood vessels and are amenable systems for modelling and identifying the regulators of diabetic vasculopathy, a disease that affects hundreds of millions of patients worldwide.


Subject(s)
Basement Membrane/pathology , Blood Vessels/pathology , Diabetic Angiopathies/pathology , Models, Biological , Organoids/pathology , Organoids/transplantation , Adaptor Proteins, Signal Transducing , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animals , Arteries/cytology , Arteries/drug effects , Arterioles/cytology , Arterioles/drug effects , Basement Membrane/cytology , Basement Membrane/drug effects , Blood Vessels/cytology , Blood Vessels/drug effects , Blood Vessels/growth & development , Calcium-Binding Proteins , Diabetic Angiopathies/enzymology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Humans , Hyperglycemia/complications , In Vitro Techniques , Inflammation Mediators/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Organoids/cytology , Organoids/drug effects , Pericytes/cytology , Pericytes/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Receptor, Notch3/metabolism , Signal Transduction , Venules/cytology , Venules/drug effects
16.
J Cell Biol ; 217(9): 3285-3300, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29959232

ABSTRACT

Drosophila melanogaster neural stem cells (neuroblasts [NBs]) divide asymmetrically by differentially segregating protein determinants into their daughter cells. Although the machinery for asymmetric protein segregation is well understood, the events that reprogram one of the two daughter cells toward terminal differentiation are less clear. In this study, we use time-resolved transcriptional profiling to identify the earliest transcriptional differences between the daughter cells on their way toward distinct fates. By screening for coregulated protein complexes, we identify vacuolar-type H+-ATPase (v-ATPase) among the first and most significantly down-regulated complexes in differentiating daughter cells. We show that v-ATPase is essential for NB growth and persistent activity of the Notch signaling pathway. Our data suggest that v-ATPase and Notch form a regulatory loop that acts in multiple stem cell lineages both during nervous system development and in the adult gut. We provide a unique resource for investigating neural stem cell biology and demonstrate that cell fate changes can be induced by transcriptional regulation of basic, cell-essential pathways.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Neural Stem Cells/metabolism , Receptors, Notch/metabolism , Transcription, Genetic/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Neural Stem Cells/cytology , Neurogenesis/physiology , Signal Transduction , Transcriptome/genetics
17.
Cell Stem Cell ; 22(4): 543-558.e12, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625069

ABSTRACT

Stem cell-specific transcriptional networks are well known to control pluripotency, but constitutive cellular processes such as mRNA splicing and protein synthesis can add complex layers of regulation with poorly understood effects on cell-fate decisions. Here, we show that the RNA binding protein HTATSF1 controls embryonic stem cell differentiation by regulating multiple aspects of RNA processing during ribosome biogenesis. HTATSF1, in a complex with splicing factor SF3B1, controls intron removal from ribosomal protein transcripts and regulates ribosomal RNA transcription and processing, thereby controlling 60S ribosomal abundance and protein synthesis. HTATSF1-dependent protein synthesis is essential for naive pre-implantation epiblast to transition into post-implantation epiblast, a stage with transiently low protein synthesis, and further differentiation toward neuroectoderm. Together, these results identify coordinated regulation of ribosomal RNA and protein synthesis by HTATSF1 and show that this essential mechanism controls protein synthesis during early mammalian embryogenesis.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal/metabolism , Animals , Humans , Mice , Trans-Activators/metabolism
18.
Cell Stem Cell ; 22(2): 143-145, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29451854

ABSTRACT

Neural stem cells in the ventricular-subventricular zone of the adult brain continuously generate differentiated neurons without depleting the stem cell pool. In this issue of Cell Stem Cell, Obernier et al. (2018) present the surprising finding that this occurs through mostly symmetric divisions that either generate two differentiating or two self-renewing daughter cells.


Subject(s)
Cell Division , Neurogenesis , Cell Differentiation , Cell Self Renewal , Neural Stem Cells
19.
EMBO Rep ; 19(1): 102-117, 2018 01.
Article in English | MEDLINE | ID: mdl-29191977

ABSTRACT

The TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature-controlled brat RNAi with transcriptome analysis to identify the immediate Brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of Brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit-amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3'UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinogenesis/genetics , Cell Lineage/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Neural Stem Cells/metabolism , Nuclear Proteins/genetics , Transcription Factors/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain/metabolism , Brain/pathology , CRISPR-Cas Systems , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Differentiation , DNA-Binding Proteins/metabolism , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Gene Editing , Gene Expression Regulation , Larva/genetics , Larva/growth & development , Larva/metabolism , Neural Stem Cells/pathology , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Proteolysis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism
20.
Development ; 144(21): 3932-3945, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28935704

ABSTRACT

Stem cells need to balance self-renewal and differentiation for correct tissue development and homeostasis. Defects in this balance can lead to developmental defects or tumor formation. In recent years, mRNA splicing has emerged as an important mechanism regulating cell fate decisions. Here we address the role of the evolutionarily conserved splicing co-factor Barricade (Barc)/Tat-SF1/CUS2 in Drosophila neural stem cell (neuroblast) lineage formation. We show that Barc is required for the generation of neurons during Drosophila brain development by ensuring correct neural progenitor proliferation and differentiation. Barc associates with components of the U2 small nuclear ribonucleoprotein (snRNP) complex, and its depletion causes alternative splicing in the form of intron retention in a subset of genes. Using bioinformatics analysis and a cell culture-based splicing assay, we found that Barc-dependent introns share three major traits: they are short, GC rich and have weak 3' splice sites. Our results show that Barc, together with the U2 snRNP complex, plays an important role in regulating neural stem cell lineage progression during brain development and facilitates correct splicing of a subset of introns.


Subject(s)
Cell Cycle , Cell Lineage , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Transcription Factors/metabolism , Alternative Splicing/genetics , Animals , Base Composition/genetics , Base Sequence , Body Patterning/genetics , Brain/anatomy & histology , Cell Count , Cell Proliferation , Clone Cells , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Knockdown Techniques , Introns/genetics , Mice , Models, Biological , Mutation/genetics , Neurons/cytology , Neurons/metabolism , Phenotype , Protein Binding , RNA Interference , RNA Splice Sites/genetics , Ribonucleoprotein, U2 Small Nuclear/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...